source. Or, if we alter the dimensions of the apparatus and observe when the fringes cease to be visible in our observing telescope, we have the means of measuring the diameter of the source, which may be a double star, or the disc of one of Jupiter's satellites, or one of the minor planets.
We may get some notion of the relation which exists between the clearness of the fringes and the size of the object when the fringes disappear, by considering a simple case like that of a double star. Suppose we have two slits in front of the object glass of a telescope focused on a single star. At the focus the rays from the two slits come together in condition to produce interference fringes, and the fringes always appear when the source is a point. Suppose we have in the field of view another star. It will produce its own series of fringes in the focus of the telescope. We shall then have two similar sets of fringes in the field of view. If, now, the two stars are so near together that the central bright fringes of the two systems coincide, then the two sets of fringes will reinforce each other. If, however, one of the stars is just so far away from the other that the angle between them is equal to the angle between the central bright band and its first adjacent minimum, then the maximum of one system of fringes will fall upon the minimum of the other set, and the two will efface each other so that the fringes disappear. Hence the fringes disappear when the angle subtended by the source is equal to the angle subtended by half the breadth of the fringes, viewed from the objec-