This page has been validated.
152
Light Waves and Their Uses

earth around the sun. Now, if the light waves were carried along with the full velocity of the earth in its orbit, we should be in the same difficulty, or in a more serious difficulty, than before. Fresnel, however, made the further supposition that the velocity of the carrying along of the light waves by the motion of the medium was less than the actual velocity of the medium itself, by a quantity which depended on the index of refraction of the substance. In the case of water the value of this factor is seven-sixteenths.

This, at first sight, seems a rather forced explanation; indeed, at the time it was proposed it was treated with considerable incredulity. An experiment was made by Fizeau, however, to test the point—in my opinion one of the most ingenious experiments that have ever been attempted in the whole domain of physics. The problem is to find the increase in the velocity of light due to a motion of the medium. We have an analogous problem in the case of sound, but in this case it is a very much simpler matter. We know by actual experiment, as we should infer without experiment, that the velocity of sound is increased by the velocity of a wind which carries the air in the same direction, or diminished if the wind moves in the opposite direction. But in the case of light waves the velocity is so enormously great that it would seem, at first sight, altogether out of the question to compare it with any velocity which we might be able to obtain in a transparent medium such as water or glass. The problem consists in finding the change in the velocity of light produced by the greatest velocity we can get—about twenty feet a second—in a column of water through which light waves pass. We thus have to find a difference of the order of twenty feet in 186,000 miles, i. e., of one part in 50,000,000. Besides, we can get only a relatively small column of water to pass light through and still see the light when it returns.