This page has been validated.
154
Light Waves and Their Uses

pieces of the same plane-parallel plate of glass. The light passes through these two tubes and is brought to a focus by the lens in condition to produce interference fringes. The apparatus might have been arranged in this way but for the fact that there would be changes in the position of the interference fringes whenever the density or temperature of the medium changed; and, in particular, whenever the current changes direction there would be produced alterations in length and changes in density; and these exceedinglyFIG. 105 slight differences are quite sufficient to account for any motion of the fringes. In order to avoid this disturbance, Fresnel had the idea of placing at the focus of the lens the mirror M, so that the two rays return, the one which came through the upper tube going back through the lower, and vice versa for the other ray. In this way the two rays pass through identical paths and come together at the same point from which they started. With this arrangement, if there is any shifting of the fringes, it must be due to the reversal of the change in velocity due to the current of water. For one of the two beams, say the upper one, travels with the current in both tubes; the other, starting at the same point, travels against the current in both tubes. Upon reversing the direction of the current of water the circumstances are exactly the reverse: the beam which before traveled with the current now travels against it, etc. The result of the experiment, as before stated, was that there was produced a