is not the import of the statement. It rather contemplates our examination of a large number, of a long succession of instances, and states that in such a succession we shall find a numerical proportion, not indeed fixed and accurate at first, but which tends in the long run to become so. In every kind of example with which we shall be concerned we shall find this reference to a large number or succession of objects, or, as we shall term it, series of them.
A few additional examples may serve to make this plain.
Let us suppose that we toss up a penny a great many times; the results of the successive throws may be conceived to form a series. The separate throws of this series seem to occur in utter disorder; it is this disorder which causes our uncertainty about them. Sometimes head comes, sometimes tail comes; sometimes there is a repetition of the same face, sometimes not. So long as we confine our observation to a few throws at a time, the series seems to be simply chaotic. But when we consider the result of a long succession we find a marked distinction; a kind of order begins gradually to emerge, and at last assumes a distinct and striking aspect. We find in this case that the heads and tails occur in about equal numbers, that similar repetitions of different faces do so also, and so on. In a word, notwithstanding the individual disorder, an aggregate order begins to prevail. So again if we are examining the length of human life, the different lives which fall under our notice compose a series presenting the same features. The length of a single life is familiarly uncertain, but the average duration of a batch of lives is becoming in an almost equal degree familiarly certain. The larger the number we take out of any mixed crowd, the clearer become the symptoms of order, the more nearly will the average length of each selected class be the same. These few cases will serve as simple examples of a property