that the number of days in all time is no greater than the number of years.
Thus on the subject of infinity it is impossible to avoid conclusions which at first sight appear paradoxical, and this is the reason why so many philosophers have supposed that there were inherent contradictions in the infinite. But a little practice enables one to grasp the true principles of Cantor's doctrine, and to acquire new and better instincts as to the true and the false. The oddities then become no odder than the people at the antipodes, who used to be thought impossible because they would find it so inconvenient to stand on their heads.
The solution of the problems concerning infinity has enabled Cantor to solve also the problems of continuity. Of this, as of infinity, he has given a perfectly precise definition, and has shown that there are no contradictions in the notion so defined. But this subject is so technical that it is impossible to give any account of it here.
The notion of continuity depends upon that of order, since continuity is merely a particular type of order. Mathematics has, in modern times, brought order into greater and greater prominence. In former days, it was supposed (and philosophers are still apt to suppose) that quantity was the fundamental notion of mathematics. But nowadays, quantity is banished altogether, except from one little corner of Geometry, while order more and more reigns supreme. The investigation of different kinds of series and their relations is now a very large part of mathematics, and it has been found that this investigation can be conducted without any reference to quantity, and, for the most part, without any reference to number. All types of series are capable of formal definition, and their properties can be deduced from the principles of symbolic logic by means of the Algebra of Relatives.