most once, and the law would cease to give information. An "event," then, is a universal defined sufficiently widely to admit of many particular occurrences in time being instances of it.
(2) The next question concerns the time-interval. Philosophers, no doubt, think of cause and effect as contiguous in time, but this, for reasons already given, is impossible. Hence, since there are no infinitesimal time-intervals, there must be some finite lapse of time τ between cause and effect. This, however, at once raises insuperable difficulties. However short we make the interval τ, something may happen during this interval which prevents the expected result. I put my penny in the slot, but before I can draw out my ticket there is an earthquake which upsets the machine and my calculations. In order to be sure of the expected effect, we must know that there is nothing in the environment to interfere with it. But this means that the supposed cause is not, by itself, adequate to insure the effect. And as soon as we include the environment, the probability of repetition is diminished, until at last, when the whole environment is included, the probability of repetition becomes almost nil.
In spite of these difficulties, it must, of course, be admitted that many fairly dependable regularities of sequence occur in daily life. It is these regularities that have suggested the supposed law of causality; where they are found to fail, it is thought that a better formulation could have been found which would have never failed. I am far from denying that there may be such sequences which in fact never do fail. It may be that there will never be an exception to the rule that when a stone of more than a certain mass, moving with more than a certain velocity, comes in contact with a pane of glass of