This page has been validated.
196
the mathematical principles
[Book I.

the bodies from the tangents PR, pr to the arcs PQ, pq, through the intervals proportional to them RQ, rq; and therefore this last force (tending to s) would make the body p revolve in the curve pqv, which would become similar to the curve PQV, in which the first force obliges the body P to revolve; and their revolutions would be completed in the same times. But because those forces are not to each other in the ratio of CP to sp, but (by reason of the similarity and equality of the bodies S and s, P and p and the equality of the distances SP, sp) mutually equal, the bodies in equal times will be equally drawn from the tangents; and therefore that the body p may be attracted through the greater interval rq, there is required a greater time, which will be in the subduplicate ratio of the intervals; because, by Lemma X, the spaces described at the very beginning of the motion are in a duplicate ratio of the times. Suppose, then the velocity of the body p to be to the velocity of the body P in a subduplicate ratio of the distance sp to the distance CP, so that the arcs pq, PQ, which are in a simple proportion to each other, may be described in times that are in a subduplicate ratio of the distances; and the bodies P, p, always attracted by equal forces, will describe round the quiescent centres C and s similar figures PQV, pqv, the latter of which pqv is similar and equal to the figure which the body P describes round the movable body S.   Q.E.D.

Case 2. Suppose now that the common centre of gravity, together with the space in which the bodies are moved among themselves, proceeds uniformly in a right line; and (by Cor. 6, of the Laws of Motion) all the motions in this space will be performed in the same manner as before; and therefore the bodies will describe mutually about each other the same figures as before, which will be therefore similar and equal to the figure pqv.   Q.E.D.

Cor. 1. Hence two bodies attracting each other with forces proportional to their distance, describe (by Prop. X) both round their common centre of gravity, and round each other mutually concentrical ellipses; and, vice versa, if such figures are described, the forces are proportional to the distances.

Cor. 2. And two bodies, whose forces are reciprocally proportional to the square of their distance, describe (by Prop. XI, XII, XIII), both round their common centre of gravity, and round each other mutually, conic sections having their focus in the centre about which the figures are described. And, vice versa, if such figures are described, the centripetal forces are reciprocally proportional to the squares of the distance.

Cor. 3. Any two bodies revolving round their common centre of gravity describe areas proportional to the times, by radii drawn both to that centre and to each other mutually.