This page has been validated.
302
the mathematical principles
[Book II.

are themselves pressed by the planes AC, ac, that is, in the proportion of ab to AB: and therefore the centrifugal forces by which these pressures are sustained are in the same ratio. The number of the particles being equal, and the situation alike, in both cubes, the forces which all the particles exert, according to the planes FGH, fgh, upon all, are as the forces which each exerts on each. Therefore the forces which each exerts on each, according to the plane FGH in the greater cube, are to the forces which each exerts on each, according to the plane fgh in the lesser cube, as ab to AB, that is, reciprocally as the distances of the particles from each other.   Q.E.D.

And, vice versa, if the forces of the single particles are reciprocally as the distances, that is, reciprocally as the sides of the cubes AB, ab; the sums of the forces will be in the same ratio, and the pressures of the sides DB, db as the sums of the forces; and the pressure of the square DP to the pressure of the side DB as ab² to AB² . And, ex æquo, the pressure of the square DP to the pressure of the side db as ab³ to AB³; that is, the force of compression in the one to the force of compression in the other as the density in the former to the density in the latter.   Q.E.D.


SCHOLIUM.

By a like reasoning, if the centrifugal forces of the particles are reciprocally in the duplicate ratio of the distances between the centres, the cubes of the compressing forces will be as the biquadrates of the densities. If the centrifugal forces be reciprocally in the triplicate or quadruplicate ratio of the distances, the cubes of the compressing forces will be as the quadratocubes, or cubo-cubes of the densities. And universally, if D be put for the distance, and E for the density of the compressed fluid, and the centrifugal forces be reciprocally as any power Dn of the distance, whose index is the number n, the compressing forces will be as the cube roots of the power En+2, whose index is the number n + 2; and the contrary. All these things are to be understood of particles whose centrifugal forces terminate in those particles that are next them, or are diffused not much further. We have an example of this in magnetical bodies. Their attractive virtue is terminated nearly in bodies of their own kind that are next them. The virtue of the magnet is contracted by the interposition of an iron plate, and is almost terminated at it: for bodies further off are not attracted by the magnet so much as by the iron plate. If in this manner particles repel others of their own kind that lie next them, but do not exert their virtue on the more remote, particles of this kind will compose such fluids as are treated of in this Proposition. If the virtue of any particle diffuse itself every way in infinitum, there will be required a greater force to produce an equal condensation of a greater quantity of the fluid. But whether