Page:On Electric Touch and the Molecular Changes produced in Matter by Electric Waves.djvu/8

This page has been validated.
Changes produced in Matter by Electric Waves
459

Again, if the increase of resistance is due to a slight separation of particles, suitable small increase of pressure ought to restore the original conductivity, as also the sensitiveness. It is, however, found that a considerable pressure is required to restore the original current, as if the outer layers of the particles were rendered partially non-conducting by radiation, and had to be broken through before the original current could be re-established. It is also found that though the sensitiveness is restored by this expedient of increasing the pressure, yet the restoration is only partial, and that after a repetition of this process the receiver loses its sensitiveness almost completely.

I have attempted to find out an explanation of this obscure "fatigue" effect. This subject will best be treated in connection with the anomalous behaviour of silver, which I find is also in a manner connected with the fatigue effect. Silver, when subjected to radiation, exhibits, as indicated in my last paper, sometimes an increase, and at other times a decrease, of resistance. The difficulty in this case cannot be explained on the supposition of variations of radiation intensity, as the anomaly persists even when the intensity of radiation is maintained uniform by keeping the radiator at a fixed distance.

In order to explain these actions, I assumed the following hypotheses, which, with the necessary deductions, are given below:—

(1) That electric radiation produces molecular change or allotropic modification in a substance.

(2) That, starting from the original molecular condition A, the effect of radiation is to convert it, to a more or less extent, into the allotropic modification B (the latter condition will be designated as the "radiation product"). It follows that this change from one state to the other must be accompanied by a corresponding change in the physical properties of the substance.

(3) As one of the properties of a substance is its electric conductivity, any allotropic changes produced by radiation should be capable of being detected by a variation in the conductivity of the substance.

(4) As a molecular strain is produced during transformation from A to B, at a certain stage there may be a rebound towards the original state A. Thus, after the molecular change from A to B condition has reached a maximum value, the further action of radiation may be to reconvert, to a more or less extent, B to A, this reversal of effect being indicated (see No. 3) by a corresponding electric reversal.

(5) That the ultimate loss of sensitiveness, known as "fatigue," is due to the presence of the radiation product, or strained B variety, along with the A variety, the opposite effects produced by the two varieties neutralising each other.

The justification for the above hypotheses is to be sought for—

(1) From analogy with other known radiation phenomena.

(2) From experimental proof—