Page:On a Self-recovering Coherer and the Study of the Cohering Action of different Metals.djvu/4

This page has been validated.
Study of the Cohering Action of different Metals.
169

more difficult than with potassium, but the response is somewhat similar to that of potassium. Though in general there is an increase of resistance produced by electric radiation, there are occasional exceptions when a diminution of resistance is produced. With some trouble the adjustment could be made so that the recovery is also automatic, but it is not so energetic as in the case of potassium.

Lithium—Specimens of this metal not being available, I obtained a deposit of it on iron electrodes by electrolysis of the fused chloride. The action produced by electric radiation was sometimes an increase and sometimes a diminution of resistance, the increase of resistance being the more frequent. With some difficulty it was possible to adjust the sensitiveness so that the recovery was automatic, but it was not energetic nor did this power persist for a long time.

Metals of the Alkaline Earth.

Pure metals of this group being not available, I had to rely on the deposit obtained by electrolysis. Chloride of calcium was fused in a crucible, and deposits were produced on iron cathodes, the anode being a carbon rod. The deposit was not very even. One of the iron rods with the deposit was tested by immersion under water, when hydrogen was evolved. I did not succeed in getting deposits of either barium or strontium, the temperature available not being sufficiently high.

On making a coherer with calcium, and keeping it immersed in kerosene, an action similar to that produced by sodium was observed. The tendency of self-recovery was, however, very slight.

Magnesium, Zinc, and Cadmium.

In these metals and in the succeeding groups there is a pronounced tendency towards a diminution of resistance by the action of electric radiation. Magnesium being easily oxidisable, there is a thin coating of oxide on the surface. When this is scraped, the metal makes a very highly sensitive receiver. The adjustment is not difficult, the metal allowing a considerable latitude of pressure and E.M.F. It has already been stated that the metals which are slightly tarnished can be more easily adjusted.

Though there is in this metal a decided tendency towards a reduction of contact resistance, yet it is possible by careful adjustment to obtain an increase of resistance. Indeed it is sometimes possible to so adjust matters that one flash of radiation produces a diminution of resistance, and the very next flash an increase of resistance. Thus a series of flashes may be made to produce alternate throws of the galvanometer needle. The more stable adjustment, however, gives a diminution of resistance, and receivers made with this metal could be made extremely sensitive. The tendency towards recovery is almost wanting.