variability of all kinds, and, on the other hand, the power of steady selection to keep the breed true. In the long run selection gains the day, and we do not expect to fail so far as to breed a bird as coarse as a common tumbler from a good short-faced strain. But as long as selection is rapidly going on, there may always be expected to be much variability in the structure undergoing modification. It further deserves notice that these variable characters, produced by man's selection, sometimes become attached, from causes quite unknown to us, more to one sex than to the other, generally to the male sex, as with the wattle of carriers and the enlarged crop of pouters.
Now let us turn to nature. When a part has been developed in an extraordinary manner in any one species, compared with the other species of the same genus, we may conclude that this part has undergone an extraordinary amount of modification, since the period when the species branched off from the common progenitor of the genus. This period will seldom be remote in any extreme degree, as species very rarely endure for more than one geological period. An extraordinary amount of modification implies an unusually large and long-continued amount of variability, which has continually been accumulated by natural selection for the benefit of the species. But as the variability of the extraordinarily-developed part or organ has been so great and long-continued within a period not excessively remote, we might, as a general rule, expect still to find more variability in such parts than in other parts of the organisation, which have remained for a much longer period nearly constant. And this, I am convinced, is the case. That the struggle between natural selection on the one hand, and the tendency to reversion and variability on the other hand, will in the