this by gnawing away the convex side; and I suspect that the bees in such cases stand in the opposed cells and push and bend the ductile and warm wax (which as I have tried is easily done) into its proper intermediate plane, and thus flatten it.
From the experiment of the ridge of vermilion wax, we can clearly see that if the bees were to build for themselves a thin wall of wax, they could make their cells of the proper shape, by standing at the proper distance from each other, by excavating at the same rate, and by endeavouring to make equal spherical hollows, but never allowing the spheres to break into each other. Now bees, as may be clearly seen by examining the edge of a growing comb, do make a rough, circumferential wall or rim all round the comb; and they gnaw into this from the opposite sides, always working circularly as they deepen each cell. They do not make the whole three-sided pyramidal base of any one cell at the same time, but only the one rhombic plate which stands on the extreme growing margin, or the two plates, as the case may be; and they never complete the upper edges of the rhombic plates, until the hexagonal walls are commenced. Some of these statements differ from those made by the justly celebrated elder Huber, but I am convinced of their accuracy; and if I had space, I could show that they are conformable with my theory.
Huber's statement that the very first cell is excavated out of a little parallel-sided wall of wax, is not, as far as I have seen, strictly correct; the first commencement having always been a little hood of wax; but I will not here enter on these details. We see how important a part excavation plays in the construction of the cells; but it would be a great error to suppose that the bees cannot build up a rough wall of wax in the proper