Page:Philosophical magazine 21 series 4.djvu/185

This page has been validated.
applied to Magnetic Phenomena.
165

those near two magnetic poles of the same name; but we know that the mechanical effect is that of attraction instead of repulsion. The lines of force in this case do not run between the bodies, but avoid each other, and are dispersed over space. In order to produce the effect of attraction, the stress along the lines of gravitating force must be a pressure.

Let us now suppose that the phenomena of magnetism depend on the existence of a tension in the direction of the lines of force, combined with a hydrostatic pressure; or in other words, a pressure greater in the equatorial than in the axial direction: the next question is, what mechanical explanation can we give of this inequality of pressures in a fluid or mobile medium? The explanation which most readily occurs to the mind is that the excess of pressure in the equatorial direction arises from the centrifugal force of vortices or eddies in the medium having their axes in directions parallel to the lines of force.

This explanation of the cause of the inequality of pressures at once suggests the means of representing the dipolar character of the line of force. Every vortex is essentially dipolar, the two extremities of its axis being distinguished by the direction of its revolution as observed from those points.

We also know that when electricity circulates in a conductor, it produces lines of magnetic force passing through the circuit, the direction of the lines depending on the direction of the circulation. Let us suppose that the direction of revolution of our vortices is that in which vitreous electricity must revolve in order to produce lines of force whose direction within the circuit is the same as that of the given lines of force.

We shall suppose at present that all the vortices in any one part of the field are revolving in the same direction about axes nearly parallel, but that in passing from one part of the field to another, the direction of the axes, the velocity of rotation, and the density of the substance of the vortices are subject to change. We shall investigate the resultant mechanical effect upon an element of the medium, and from the mathematical expression of this resultant we shall deduce the physical character of its different component parts.

Prop. I.—If in two fluid systems geometrically similar the velocities and densities at corresponding points are proportional, then the differences of pressure at corresponding points due to the motion will vary in the duplicate ratio of the velocities and the simple ratio of the densities.

Let l be the ratio of the linear dimensions, m that of the velocities, n that of the densities, and p that of the pressures due to the motion. Then the ratio of the masses of corresponding portions will be l3n, and the ratio of the velocities acquired in