Page:Philosophical magazine 23 series 4.djvu/106

This page has been proofread, but needs to be validated.

86 Prof. Maxwell on the Theory of Molecular Vortices

conceives magnetism to consist in currents of a fluid whose direction corresponds with that of the lines of magnetic force; and electric currents, on this theory, are accompanied by, if not dependent on, a rotatory motion of the fluid about the axes of the current. Professor Helmholtz[1] has investigated the motion of an incompressible fluid, and has conceived lines drawn so as to correspond at every point with the instantaneous axis of rotation of the fluid there. He has pointed out that the lines of fluid motion are arranged according to the same laws with respect to the lines of rotation, as those by which the lines of magnetic force are arranged with respect to electric currents. On the other hand, in this paper I have regarded magnetism as a phenomenon of rotation, and electric currents as consisting of the actual translation of particles, thus assuming the inverse of the relation between the two sets of phenomena.

Now it seems natural to suppose that all the direct effects of any cause which is itself of a longitudinal character, must be themselves longitudinal, and that the direct effects of a rotatory cause must be themselves rotatory. A motion of translation along an axis cannot produce a rotation about that axis unless it meets with some special mechanism, like that of a screw, which connects a motion in a given direction along the axis with a rotation in a given direction round it; and a motion of rotation, though it may produce tension along the axis, cannot of itself produce a current in one direction along the axis rather than the other.

Electric currents are known to produce effects of transference in the direction of the current. They transfer the electrical state from one body to another, and they transfer the elements of electrolytes in opposite directions, but they do not[2] cause the plane of polarization of light to rotate when the light traverses le axis of the current.

On the other hand, the magnetic state is not characterized by any strictly longitudinal phenomenon. The north and south poles differ only in their names, and these names might be exchanged without altering the statement of any magnetic phenomenon; whereas the positive and negative poles of a battery are completely distinguished by the different elements of water which are evolved there. The magnetic state, however, is characterized by a well-marked rotatory phenomenon discovered by Faraday[3] — the rotation of the plane of polarized light when transmitted along the lines of magnetic force.

When a transparent diamagnetic substance has a ray of plane-polarized light passed through it, and if lines of magnetic force

  1. Crelle, Journal, vol. lv. (1858) p. 25.
  2. Faraday, 'Experimental Researches,' 951-954, and 2216-2220.
  3. Ibid., Series XIX.