absolute space, all displacements we can observe are relative displacements. I have often had occasion to express these considerations so familiar to philosophers. They have even given me a publicity I would gladly have avoided. All the reactionary French journals have made me prove that the sun turns around the earth. In the famous case between the Inquisition and Galileo, Galileo should be all wrong.
To return to the old mechanics. It admitted the principle of relativity; in place of being founded on experiments, its laws were deduced from this fundamental principle. These considerations sufficed for purely mechanical phenomena, but not for important parts of physics, for example optics. We considered the velocity of light as absolute with reference to the ether. This velocity could be measured. We had theoretically the means of comparing the displacement of a moving body to an absolute displacement, the means of deciding whether or not a body was in absolute motion.
Delicate experiments, apparatus exceedingly precise, which I shall not describe to you, enabled us to attempt the practical realization of such a comparison: the result was null. The principle of relativity admits of no restriction in the new mechanics; it has, if I may so speak, an absolute value.
To understand the role the principle of relativity plays in the new mechanics, we are led first to speak of apparent time, a very ingenious invention of the physicist Lorentz. We suppose two observers, the one A at Paris, the other B at Berlin. A and B have identical chronometers and wish to set them; but they are exceptionally scrupulous observers and require in their setting an extraordinary exactitude not only, for instance, to the second, but to the thousand-millionth of a second. How can they do it? From Paris to Berlin, A sends a telegraphic signal, by wireless,