Page:Popular Science Monthly Volume 12.djvu/502

This page has been validated.

weather is favorable to putrefaction. We open our box at the Bel-Alp, and count out fifty-four flasks, with their liquids as clear as filtered drinking-water. In six flasks, however, the infusion is found muddy. We closely examine these, and discover that every one of them has had its fragile end broken off in the transit from London. Air has entered the flasks, and the observed muddiness is the result. My colleague knows as well as I do what this means. Examined with a pocket-lens, or even with a microscope of insufficient power, nothing is seen in the muddy liquid; but regarded with a magnifying power of a thousand diameters or so, what an astonishing appearance does it present! Leeuwenhoek estimated the population of a single drop of stagnant water at 500,000,000: probably the population of a drop of our turbid infusion would be this many times multiplied. The field of the microscope is crowded with organisms, some wabbling slowly, others shooting rapidly across the microscopic field. They dart hither and thither like a rain of minute projectiles; they pirouette and spin so quickly round, that the retention of the retinal impression transforms the little living rod into a twirling wheel. And yet the most celebrated naturalists tell us that they are vegetables. From the rod-like shape which they so frequently assume, these organisms are called bacteria—a term, be it here remarked, which covers organisms of very diverse kinds.

Has this multitudinous life been spontaneously generated in these six flasks, or is it the progeny of living germinal matter carried into the flasks by the entering air? If the infusions have a self-generative power, how are the sterility and consequent clearness of the fifty-four uninjured flasks to be accounted for? My colleague may urge—and fairly urge—that the assumption of germinal matter is by no means necessary; that the air itself may be the one thing needed to wake up the dormant infusions. We will examine this point immediately. But I would meanwhile remind my friend that I am working on the exact lines laid down by our most conspicuous heterogenist. He distinctly affirms that the withdrawal of the atmospheric pressure above the infusion favors the production of organisms; and he accounts for their absence in tins of preserved meat, fruit, and vegetables, by the hypothesis that fermentation has begun in such tins, that gases have been generated, the pressure of which has stifled the incipient life and stopped its further development.[1] This is Dr. Bastian's theory of preserved meats. Its author has never, to my knowledge, pierced a tin of preserved meat, fruit, or vegetable, under water with a view of testing its truth. Had he done so, he would have found it erroneous. In well-preserved tins I have invariably found, not an outrush of gas, but an inrush of water, when the tin was perforated. I have noticed this recently in tins which have lain perfectly good for sixty-three years in the Royal Institution. Modern tins, subjected to

  1. "Beginnings of Life," vol. i., p. 418.