Page:Popular Science Monthly Volume 12.djvu/754

This page has been validated.

present variations sometimes of more than one hundred per cent. Such estimates are usually made in view of some dynamic theory, and they are based upon physiological data which are necessarily uncertain and subject to wide and frequent variations. No approximate estimate, even, can be made of the actual amount of heat produced within the living organism, except, perhaps, during a condition of nearly absolute muscular repose. The only way in which this could be done would be to deduct the force used in muscular work, circulation, respiration, and the nutritive processes, from the heat-value or force-value of the food. These elements of the question being uncertain, an accurate estimate of the heat produced becomes impossible, as, at the best, the only definite quantity in the problem is the total heat-value or force-value of food.

"(c.) To compare an amount of muscular work actually performed with the estimated force-value of food, apart from the impossibility of arriving at an accurate estimate of the amount of food consumed in circulation, respiration, the nutritive processes, and the production of heat, which is a necessary element in the problem, the work actually performed in walking a certain distance must be reduced to foot-pounds or foot-tons. The formula for this is so uncertain that no such reduction can be made which can be assumed to be even approximatively correct.

"II. The method of calculating the possible amount of force of which the body is capable, by using as the sole basis for this calculation the force-value of food, must be abandoned until the various necessary elements of the problem can be made sufficiently accurate to accord with the results of experiments upon the living body. Until that time arrives, physiologists should rely upon the positive results obtained by experiments rather than upon calculations made from uncertain data and under the influence of special theories. In case of fatal disagreement between any theory and definite experimental facts, the theory must be abandoned, provided the facts be incontestable.

"III. Experiments show that the estimated force-value of food, after deducting the estimated force used in circulation, respiration, the nutritive processes, and in the production of heat, will sometimes account for a small fraction only of muscular work actually performed, this work being reduced to foot-tons by the uncertain process to which I have already alluded. The errors in these calculations are manifestly so considerable that the calculated results seem to be of little value, while the experimental fact that a certain amount of work has been accomplished must remain.

"IV. It must be admitted that, under ordinary and normal conditions of diet and muscular exercise, the weight of the body being uniform, the ingress and egress of matter necessarily balance each other. If this balance be disturbed by diminishing the supply of food below the requirements of the system for its nutrition and for muscular work, the body necessarily loses weight, a certain portion of its constituent parts being consumed and not repaired. If the balance be disturbed by increasing the muscular work to the maximum of endurance and beyond the possibility of complete repair by food, the body loses weight. The probable source of muscular power may be most easily and satisfactorily studied by disturbing the balance between consumption and repair by increasing the work. In this, it is rational to assume that the processes of physiological wear of the tissues are not modified in kind, but simply in degree of activity.

"V. Experiments show that excessive and prolonged muscular exercise may increase the waste or wear of certain of the constituents of the body to such a degree that this wear is not repaired by food. Under these conditions, there is an increased discharge of nitrogen, particularly in the urine. This waste of