Page:Popular Science Monthly Volume 13.djvu/26

This page has been validated.

would bear, and then placed the instrument in a cold room, trusting to the great radiating power of lampblack to maintain the temperature of the blackened surfaces of the vanes below that of the glass. Immediately the wheel began to turn in the opposite direction, and continued to turn until the temperature of the glass came into equilibrium with the surrounding objects.

These early experiments have since been confirmed to the fullest extent, and no physicist at the present day can reasonably doubt that the radiometer is a very beautiful example of a heat-engine, and it is the first that has been made to work continuously by the heat of the sunbeam. But it is one thing to show that the instrument is a heat-engine, and quite another thing to explain in detail the manner in which it acts. In regard to the last point, there is still room for much difference of opinion, although physicists are generally agreed in referring the action to the residual gas that is left in the bulb. As for myself, I became strongly persuaded—after experimenting with more than one hundred of these instruments, made under my own eye, with every variation of conditions I could suggest—that the effect was due to the same cause which determines gas-pressure, and, according to the dynamical theory of gases, this amounts to saying that the effect is due to molecular motion. I have not time, however, to describe either my own experiments on which this opinion was first based, or the far more thorough investigations since made by others, which have served to strengthen the first impression.[1] But, after our previous discussions, a few words will suffice to show how the molecular theory explains the new phenomena.

Although the air in the bulb has been so nearly exhausted that less than the one-thousandth part remains, yet it must be borne in mind that the number of molecules left behind is by no means inconsiderable. As will be seen by referring to our table, there must still be no less than 311,000 million million in every cubic inch. Moreover, the absolute pressure which this residual gas exerts is a very appreciable quantity. It is simply the one-thousandth of the normal pressure of the atmosphere, that is, of 14 710 pounds on a square inch; which is equivalent to a little over 100 grains on the same area. Now, the area of the blackened surfaces of the vanes of an ordinary radiometer measures just about a square inch, and the wheel is mounted so delicately that a constant pressure of one-tenth of a grain would be sufficient to produce rapid motion. So that a difference of pressure on the opposite faces of the vanes, equal to one one-thousandth of the whole amount, is all that we need account for; and, as can easily be calculated, a difference of temperature of less than half a degree Fahrenheit would cause all this difference in the pressure of the rarefied air.

But you may ask, How can such a difference of pressure exist on

  1. See notice of these investigations by the author of this article, in American Journal of Science and Arts, September, 1877 (3), xiv., 231.