Page:Popular Science Monthly Volume 13.djvu/301

This page has been validated.

stances, come from the glassy sea; while both their variation of direction and their perfectly continuous fall into silence are irreconcilable with the notion that they came from fixed objects on the land. They came from that portion of the atmosphere into which the trumpet poured its maximum sound, and fell in intensity as the direct sound penetrated to greater atmospheric distances.

The day on which our latest observations were made was particularly fine. Before reaching Dungeness, the smoothness of the sea and the serenity of the air caused me to test the echoing power of the atmosphere. A single ship lay about half a mile distant between us and the land. The result of the proposed experiment was clearly foreseen. It was this: The rocket being sent up, it exploded at a great height; the echoes retreated in their usual fashion, becoming less and less intense as the distance of the surfaces of reflection from the observers increased. About five seconds after the explosion, a single loud shock was sent back to us from the side of the vessel lying between us and the land. Obliterated for a moment by this more intense echo, the aërial reverberation continued its retreat, dying away into silence in two or three seconds afterward.

I have referred to the firing of an 8-ounce rocket from the deck of the Galatea, on March 8, 1877, stating the duration of its echoes to be seven seconds. Mr. Prentice, who was present at the time, assured me that, in his experiments with rockets, similar echoes had been frequently heard of more than twice this duration. The ranges of his sounds alone would render this result in the highest degree probable.

To attempt to interpret an experiment which I have not had an opportunity of repeating is an operation of some risk; and it is not without a consciousness of this that I refer here to a result considered adverse to the notion of aërial echoes. When the trumpet of a siren is pointed toward the zenith, it is alleged that when the siren is sounded no echo is returned. Now, the reflecting surfaces which give rise to these echoes are for the most part due to differences of temperature between sea and air. If, through any cause, the air above be chilled, we have descending streams—if the air below be warmed, we have ascending streams as the initial cause of atmospheric flocculence. A sound proceeding vertically does not cross the streams, nor impinge upon the reflecting surfaces, as does a sound proceeding horizontally across them. Aërial echoes, therefore, will not accompany the vertical sound as they accompany the horizontal one. The experiment, as I interpret it, is not opposed to the theory of aerial echoes which I have ventured to enunciate. But, as I have indicated, not only to see, but to vary such an experiment, is a necessary prelude to grasping its full significance.

In a paper published in the "Philosophical Transactions" for 1876, Prof. Osborne Reynolds refers to these echoes in the following terms: "Without attempting to explain the reverberations and echoes which