Page:Popular Science Monthly Volume 14.djvu/574

This page has been validated.
556
THE POPULAR SCIENCE MONTHLY.

electric current the moderate warmth of the battery is not only carried away but concentrated, so as to produce, at any distance from its origin, a heat next in order to that of the sun. The current might therefore be defined as the swift carrier of heat. Loading itself here with invisible power, by a process of transmutation which outstrips the dreams of the alchemist, it can discharge its load, in the fraction of a second, as light and heat, at the opposite side of the world.

Thus, the light and heat produced outside the battery are derived from the metallic fuel burned within the battery; and, as zinc happens to be an expensive fuel, though we have possessed the electric light for more than seventy years, it has been too costly to come into general use. But within these walls, in the autumn of 1831, Faraday discovered a new source of electricity, which we have now to investigate. On the table before me lies a coil of covered copper wire, with its ends disunited. I lift one side of the coil from the table, and in doing so exert the muscular effort necessary to overcome the simple weight of the coil. I unite its two ends and repeat the experiment. The effort now required, if accurately measured, would be found greater than before. In lifting the coil I cut the lines of the earth's magnetic force, such cutting, as proved by Faraday, being always accompanied, in a closed conductor, by the production of an "induced "electric current which, as long as the ends of the coil remained separate, had no circuit through which it could pass. The current here evoked subsides immediately as heat; this heat being the exact equivalent of the excess of effort just referred to as over and above that necessary to overcome the simple weight of the coil. When the coil is liberated it falls back to the table, and when its ends are united it encounters a resistance over and above that of the air. It generates an electric current opposed in direction to the first, and reaches the table with a diminished shock. The amount of the diminution is accurately represented by the warmth which the momentary current develops in the coil. Various devices were employed to exalt these induced currents, among which the instruments of Pixii, Clarke, and Saxton were long conspicuous. Faraday, indeed, foresaw that such attempts were sure to be made; but he chose to leave them in the hands of the mechanician, while he himself pursued the deeper study of facts and principles, "I have rather," he writes in 1831, "been desirous of discovering new facts and new relations dependent on magneto-electric induction than of exalting the force of those already obtained; being assured that the latter would find their full development hereafter."

For more than twenty years magneto-electricity had subserved its first and noblest purpose of augmenting our knowledge of the powers of nature. It had been discovered and applied to intellectual ends, its application to practical ends being still unrealized. The Drummond light had raised thoughts and hopes of vast improvements in public illumination. Many inventors tried to obtain it cheaply; and in