Page:Popular Science Monthly Volume 14.djvu/586

This page has been validated.
568
THE POPULAR SCIENCE MONTHLY.

not far to seek. No matter how commercially lucrative the work upon which he was engaged might be, he would instantly turn aside from it to seize and realize the ideas of a scientific man. He had an inventor's power, and an inventor's delight in its exercise. The late Mr. Becker possessed the same power in a very considerable degree. On the Continent, Froment, Breguet, Sauerwald, and others might be mentioned as eminent instances of ability of this kind. Such minds resemble a liquid on the point of crystallization. Stirred by a hint, crystals of constructive thought immediately shoot through them. That Mr. Edison possesses this intuitive power in no common measure is proved by what he has already accomplished. He has the penetration to seize the relationship of facts and principles, and the art to reduce them to novel and concrete combinations. Hence, though he has thus far accomplished nothing that we can recognize as new in relation to the electric light, an adverse opinion as to his ability to solve the complicated problem on which he is engaged would be unwarranted.

I will endeavor to illustrate in a simple manner Mr. Edison's alleged mode of electric illumination, taking advantage of what Ohm has taught us regarding the laws of the current, and what Joule has taught us regarding the relation of resistance to the development of light and heat. From one end of a voltaic battery runs a wire, dividing at a certain point into two branches which reunite in a single wire connected with the other end of the battery. From the positive end of the battery the current passes first through the single wire to the point of junction, where it divides itself between the branches according to a well-known law. If the branches be equally resistant, the current divides itself equally between them. If one branch be less resistant than the other, more than half the current will choose the freer path. The strict law is that the quantity of current is inversely proportional to the resistance. A clear image of the process is derived from the deportment of water. When a river meets an island it divides, passing right and left of the obstacle, and afterward reuniting. If the two branch beds be equal in depth, width, and inclination, the water will divide itself equally between them. If they be unequal, the larger quantity of water will flow through the more open course. And as, in the case of the water, we may have an indefinite number of islands producing an indefinite subdivision of the trunk stream, so in the case of electricity we may have, instead of two branches, any number of branches, the current dividing itself among them, in accordance with the law which fixes the relation of flow to resistance.

Let us apply this knowledge. Suppose an insulated copper rod, which we may call an "electric main," to be laid down along one of our streets, say along the Strand. Let this rod be connected with one end of a powerful voltaic battery, a good metallic connection being established between the other end of the battery and the gas-pipes under the street. As long as the electric main continues unconnected