Page:Popular Science Monthly Volume 15.djvu/175

This page has been validated.
STUDY OF PHYSICS IN SECONDARY SCHOOLS.
163

The method of instruction in physical science, therefore, in the secondary grades of schools, seems to me to be too costly and not sufficiently logical. The remedy does not consist in curtailing the amount of attention paid to the subject in the lower schools, or in relegating it to a more advanced period of education. It is more reasonably embraced in leading teachers to seek simpler methods of instruction, simpler apparatus, and to avoid abstruse conceptions, and the solution of mechanical problems for which mere formulas are given. It would be well, also, if the best students are led to experiment themselves, and are stimulated to observe. This is hardly possible in crowded grammar schools; but the excellent little treatises of Professor Mayer on experimental physics would lead many children, under proper encouragement from their teachers, to try simple experiments at home.

An ideal method of teaching physics in the secondary grade of schools would consist in developing the whole subject from the standpoint of motion, insisting upon the larger facts, correlating them as far as possible, and neglecting special applications and special facts. A number of interesting experiments can show that work must be done in all cases to produce work, and that motion can be changed into heat, and heat into motion. The student's mind should be tempted to take, at the very beginning of his study of the subject, an extended view of the application of the law of the conservation of energy. While treating the subject of force, a little descriptive astronomy can be given which will aid in stimulating the imagination. The subjects of heat and acoustics can be taught purely under the head of mechanics, with a variety of most interesting and simple experiments. I am inclined to place the subject of electricity and magnetism under the same head; and, beginning with the fact that electricity is generated by a voltaic cell, I should trace its simple manifestations until they conduct one to the law that all motion can be converted into electricity, and that electricity can be entirely converted again into heat and light. Having then shown that light can be produced by motion, the undulatory theory can be cautiously introduced. As a review of the subject of physics, one could take as a text the impossibility of perpetual motion, and enforce it with a variety of illustrations. The utility of the study of physics in the grammar schools is often questioned, and indeed the larger question of the value of scientific training except to the few in the world at large is often mooted. There is no doubt that the study of the humanities, in which the great story of men's deeds in the past is recorded, will always prove the most fascinating to the majority; and it can be maintained with reason that those subjects which readily excite an interest in the largest number will prove the readiest means of intellectual training. Science is regarded by many scholars merely as a practical branch of human knowledge, and, although its great value in contributing to the good of the world is acknowledged, yet