Page:Popular Science Monthly Volume 17.djvu/840

This page has been validated.
820
THE POPULAR SCIENCE MONTHLY.

apparatus for producing the effect remains to be described. This consists of a plane mirror of flexible material—such as silvered mica or microscope glass. Against the back of this mirror the speaker's voice is directed. The light reflected from this mirror is thus thrown into vibrations corresponding to those of the diaphragm itself.

In arranging the apparatus for the purpose of reproducing sound at a distance, any powerful source of light may be used, but we have experimented chiefly with sunlight. For this purpose a large beam is concentrated by means of a lens upon the diaphragm-mirror, and, after reflection, is again rendered parallel by means of another lens. The beam is received at a distant station upon a parabolic reflector, in the focus of which is placed a sensitive selenium-cell, connected in a local circuit with a battery and telephone. A large number of trials of this apparatus have been made with the transmitting and receiving instruments so far apart that sounds could not be heard directly through the air. In illustration, I shall describe one of the most recent of these experiments. Mr. Tainter operated the transmitting instrument, which was placed on the top of the Franklin schoolhouse in Washington, and the sensitive receiver was arranged in one of the windows of my laboratory, 1325 L Street, at a distance of two hundred and thirteen metres. Upon placing the telephone to my ear I heard distinctly from the illuminated receiver the words, "Mr. Bell, if you hear what I say, come to the window and wave your hat." In laboratory experiments the transmitting and receiving instruments are necessarily within ear-shot of one another, and we have, therefore, been accustomed to prolong the electric circuit connected with the selenium receiver, so as to place the telephones in another room. By such experiments we have found that articulate speech can be reproduced by the oxyhydrogen light, and even by the light of a kerosene-lamp. The loudest effects obtained from light are produced by rapidly interrupting the beam by the perforated disk. The great advantage of this form of apparatus for experimental work is the noiselessness of its rotation, admitting the close approach of the receiver without interfering with the audibility of the effect heard from the latter; for it will be understood that musical tones are emitted from the receiver when no sound is made at the transmitter. A silent motion thus produces a sound. In this way musical tones have been heard even from the light of a candle. When distant effects are sought another apparatus is used. By placing an opaque screen near the rotating disk the beam can be entirely cut off by a slight motion of the hand, and musical signals, like the dots and dashes of the Morse telegraph code, can thus be produced at the distant receiving station.

We have made experiments with the object of ascertaining the nature of the rays that affect selenium. For this purpose we have placed in the path of an intermittent beam various absorbing substances. Professor Cross has been kind enough to give me his assist-