Open main menu

Page:Popular Science Monthly Volume 19.djvu/340

This page has been proofread, but needs to be validated.
326
THE POPULAR SCIENCE MONTHLY.

instance, when an electrical current is passed through spongy platinum while it is exposed to intermittent sunlight, a distinct musical tone is produced by a telephone in the same circuit. In all such cases the effect is increased by the use of an induction-coil; and the sensitive cells can be employed for the reproduction of articulate speech, as well as for the production of musical sounds.

We have also found that loud sounds are produced from lamp-black by passing through it an intermittent electrical current; and that it can be used as a telephonic receiver for the reproduction of articulate speech by electrical means.

A convenient mode of arranging a lampblack cell for experimentalPSM V19 D340 Lampblack cell in an experimental receiver.jpgFig. 9. purposes is shown in Fig. 9. When an intermittent current is passed through the lampblack (A), or when an intermittent beam of sunlight falls upon it through the glass plate (B), a loud musical tone can be heard by applying the ear to the hearing-tube (C). When the light and the electrical current act simultaneously, two musical tones are perceived, which produce beats when nearly of the same pitch. By proper arrangements a complete interference of sound can undoubtedly be produced.

Upon the Measurement of the Sonorous Effects produced by Different Substances.—We have observed that different substances produce sounds of very different intensities under similar circumstances of experiment, and it has appeared to us that very valuable information might be obtained if we could measure the audible effects produced. For this purpose we have constructed several different forms of apparatus for studying the effects, but, as our researches are not yet complete, I shall confine myself to a simple description of some of the forms of apparatus we have devised.

When a beam of light is brought to a focus by means of a lens, the beam diverging from the focal point becomes weaker as the distance increases in a calculable degree. Hence, if we can determine the distances from the focal point at which two different substances emit sounds of equal intensity, we can calculate their relative sonorous powers.

Preliminary experiments were made by Mr. Tainter, during my absence in Europe, to ascertain the distance from the focal point of a lens at which the sound produced by a substance became inaudible. A few of the results obtained will show the enormous differences existing between different substances in this respect.