Page:Popular Science Monthly Volume 2.djvu/604

This page has been validated.
584
THE POPULAR SCIENCE MONTHLY.

and allowed to season or dry in a gradual manner, it is found to be the most durable. In the arts, however, artificial drying is often resorted to, as in the case of gun-stocks. These are put into a desiccating chamber, where a current of air at 90° or 100° is passed over them, at such a rate as to change the whole volume of air in the chamber every three minutes, and it is found that a year of seasoning may thus be saved. The walnut-wood is as good, after this process, as if the seasoning had been accomplished by time and exposure, and works more smoothly under the cutting instruments of the stock-machinery.

Wood will always warp after a fresh surface has been exposed, and will likewise change its form by the presence of any moisture, either from that contained in the atmosphere or from wetting the surface. The effect of moisture on dry wood is to cause the tubular fibres to swell; hence it is that, if a plank or board is wetted upon one side, the fibres there will be distended, and the plank, in consequence, must bend.

The natural law that governs the shrinking or contraction of timber is most important to practical men, but it is too often overlooked.

The amount of the shrinkage of timber in length, when seasoning, is so inconsiderable that it may in practice be disregarded. But the shrinkage in transverse directions is much greater, and presents some peculiarities which can only be explained by examining the structure of the wood, as resulting from its mode of growth. An examination of the end section of any exogenous tree, such as the beech or oak, will show the general arrangement of its structure. It consists of a mass of longitudinal fibrous tubes, arranged in irregular circles, which are bound together by means of radial plates or rays, which have been variously named: they are the "silver grain" of the carpenter, or the "medullary rays" of the botanist, and are in reality the same in their nature as the pith. The radial direction of these plates or rays, and the longitudinal disposition of the woody fibre, must be considered in order to understand the action of seasoning. For the lateral contraction or collapsing of the longitudinal fibrous or tubular part of the structure cannot take place without first tearing the medullary rays, hence the shrinking of the woody bundles finds relief by splitting the timber in radial lines from the centre parallel with the medullary rays, thereby enabling the tree to maintain its full diameter. If the entire mass of tubular fibre composing the tree were to contract bodily, then the medullary rays would, of necessity, have to be crushed in the radial direction to enable it to take place, and the timber would thus be as much injured in proportion as would be the case in crushing the wood in a longitudinal direction.

If an oak or beech tree is cut into four quarters, by passing the saw twice through the centre at right angles, before the splitting and contracting have commenced, the lines a c and b c in Fig. 1 would be of the same length, and at right angles to each other, or, in the tech-