Page:Popular Science Monthly Volume 20.djvu/180

This page has been proofread, but needs to be validated.
168
THE POPULAR SCIENCE MONTHLY.

enteenth century. The person who rendered this good service to paleontology was Nicholas Steno, professor of anatomy in Florence, though a Dane by birth. Collectors of fossils at that day were familiar with certain bodies termed "glossopetræ," and speculation was rife as to their nature. In the first half of the seventeenth century, Fabio Colonna had tried to convince his colleagues of the famous Accademia dei Lincei that the glossopetræ were merely fossil sharks' teeth, but his arguments made no impression. Fifty years later Steno reopened the question, and, by dissecting the head of a shark and pointing out the very exact correspondence of its teeth with the glossopetræ, left no rational doubt as to the origin of the latter. Thus far, the work of Steno went little further than that of Colonna, but it fortunately occurred to him to think out the whole subject of the interpretation of fossils, and the result of his meditations was the publication, in 1669, of a little treatise with the very quaint title of "De Solido intra Solidum naturaliter contento." The general course of Steno's argument may be stated in a few words. Fossils are solid bodies which by some natural process have come to be contained within other solid bodies—namely, the rocks in which they are imbedded; and the fundamental problem of paleontology, stated generally, is this: "Given a body endowed with a certain shape and produced in accordance with natural laws, to find in that body itself the evidence of the place and manner of its production."[1] The only way of solving this problem is by the application of the axiom that "like effects imply like causes," or as Steno puts it, in reference to this particular case, that "bodies which are altogether similar have been produced in the same way."[2] Hence, since the glossopetræ are altogether similar to sharks' teeth, they must have been produced by shark-like fishes; and since many fossil shells correspond, down to the minutest details of structure, with the shells of existing marine or fresh-water animals, they must have been produced by similar animals; and the like reasoning is applied by Steno to the fossil bones of vertebrated animals, whether aquatic or terrestrial. To the obvious objection that many fossils are not altogether similar to their living analogues, differing in substance while agreeing in form, or being mere hollows or impressions, the surfaces of which are figured in the same way as those of animal or vegetable organisms, Steno replies by pointing out the changes which take place in organic remains imbedded in the earth, and how their solid substance may be dissolved away entirely, or replaced by mineral matter, until nothing is left of the original but a cast, an impression, or a mere trace of its contours. The principles of investigation thus excellently stated and illustrated by Steno in 1669, are those which have, consciously or un-

  1. "De Solido intra Solidum," p. 5. "Dato corpore certâ figurâ prædito et juxta leges naturæ producto, in ipso corpore argumenta invenire locum et modum productionis detegentia."
  2. "Corpora sibi invicem omnino similia simili etiam modo producta sunt."