Page:Popular Science Monthly Volume 20.djvu/216

This page has been proofread, but needs to be validated.
204
THE POPULAR SCIENCE MONTHLY.

our present instruments we can perceive lines ruled on glass of 190000 of an inch apart. But, owing to the properties of light itself, the fringes due to interference begin to produce confusion at distances of 174000, and in the brightest part of the spectrum at little more than 190000 they would make the obscurity more or less complete. If, indeed, we could use the blue rays by themselves, their waves being much shorter, the limit of possible visibility might be extended to 1120000; and as Helmholtz has suggested, this perhaps accounts for Stinde having actually been able to obtain a photographic image of lines only 1100000 of an inch apart. It would seem, then, that, owing to the physical characters of light, Ave can, as Sorby has pointed out, scarcely hope for any great improvement so far as the mere visibility of structure is concerned, though in other respects, no doubt, much may be hoped for. At the same time, Dallinger and Royston Pigott have shown that, so far as the mere presence of simple objects is concerned, bodies of even smaller dimensions can be perceived.

Sorby is of opinion that in a length of 180000 of an inch there would probably be from 500 to 2,000 molecules—500, for instance, in albumen and 2,000 in water. Even, then, if we could construct microscopes far more powerful than any we now possess, they would not enable us to obtain by direct vision any idea of the ultimate molecules of matter. Sorby calculates that the smallest sphere of organic matter which could be clearly defined with our most powerful microscopes would contain many millions of molecules of albumen and water, and it follows that there may be an almost infinite number of structural characters in organic tissues, which we can at present foresee no mode of examining.

The science of meteorology has made great progress; the weather, which was formerly treated as a local phenomenon, being now shown to form part of a vast system of mutually dependent cyclonic and anti-cyclonic movements. The storm-signals issued at our ports are very valuable to sailors, while the small weather-maps, for which we are mainly indebted to Francis Galton, and the forecasts, which any one can obtain on application, either personally or by telegraph, at the Meteorological Office, are also of increasing utility.

Electricity, in the year 1831, may be considered to have just been ripe for its adaptation to practical purposes; it was but a few years previously, in 1819, that Oersted had discovered the deflective action of the current on the magnetic needle, that Ampère had laid the foundation of electro-dynamics, that Schweitzer had devised the electric coil or multiplier, and that Sturgeon had constructed the first electromagnet. It was in 1831 that Faraday, the prince of pure experimentalists, announced his discoveries of voltaic induction and magneto-electricity, which, with the other three discoveries, constitute the principles of nearly all the telegraph instruments now in use; and in