Page:Popular Science Monthly Volume 20.djvu/225

This page has been proofread, but needs to be validated.
A HALF-CENTURY OF SCIENCE.
213

and indigo. The problem of the natural alkaloids has also been attacked, in some cases with more than partial success. Methylconine, which occurs along with coninc in the hemlock, has been recently prepared artificially by Michael and Gundelach, this being the first instance of the synthesis of a natural alkaloid. A proximate synthesis of atropine, the alkaloid of the deadly nightshade, has been accomplished by Ladenburg. It seems further probable that at no distant date the useful alkaloids, such as quinine, may also be synthesized, inasmuch as quinoline, one of the products of the decomposition of quinine and of some of the allied bases, has recently been prepared by Skraup by a method which admits of its being obtained in any quantity.

Much also has been done in the way of building up compounds the existence of which was predicted by theory. Indeed, the extent to which hitherto undiscovered substances can be predicated is doubtless the greatest triumph achieved by chemists during the past fifty years. As yet, however, only the statical side of chemistry has been developed. While the physicist has been engaged in tracing, for the gaseous condition at least, the paths of the molecules and calculating their velocities, the chemist, whose business is with the atoms within the molecule, can point to no such scientific conquests. All that he knows concerning the intramolecular atoms and all that he expresses in his constitutional formulæ is, the particular relation of union in which each of these atoms stands to the others—which of them are directly united (as he expresses it) to other given atoms, and which of them are in indirect union. Of the relative positions in space occupied by these atoms, and of their modes of motion, he is absolutely ignorant. In like manner, in a chemical reaction, the initial and final conditions of the reacting substances are known, but the intermediate stages—the modes of change—are for the most part unexplained.

Owing to a feeling that no number, however great, of successfully solved problems of constitutional chemistry (as at present understood), and no number of syntheses, however brilliant, of natural compounds could raise chemistry above the statical stage—that the solution of the dynamical problem can not be arrived at by purely chemical means—has led many chemists to approach the subject from the physical side. The results which the physico-chemical methods, as exemplified in the laws already alluded to of Dulong and Petit, Avogadro, and Mitscherlich, have yielded in the past, offer the best guarantee of their success in the future. And the advantages of many of the physical methods are obvious. Every purely chemical examination—whether proximate or ultimate—of a compound, presupposes the destruction of the substance under examination: the chemist "murders to dissect." But observations on the action of a substance on the rays of light, on the relative volumes occupied by molecular quantities of a substance, on its velocity of transpiration in the liquid or gaseous state—these