Page:Popular Science Monthly Volume 20.djvu/671

This page has been proofread, but needs to be validated.
SOUND AND RADIANT HEAT.
651

could occur; and yet experiments made with this arrangement entirely confirmed the preceding ones, wherein by far the greater quantity of heat which reached the pile had undergone reflection.

When the source of heat was changed to a carefully worked cylinder of lime, a portion of which was rendered incandescent by an ignited stream of coal-gas and oxygen, the results were confirmatory of those obtained with the spiral. The order of absorption in both cases was the same, the only difference being that the fractional part of the total radiation absorbed in the case of the lime-light was less than that absorbed in the case of the spiral.

To condense the radiation from the lime-light, concave mirrors were sometimes employed, and sometimes rock-salt lenses. The results in both cases were identical.

An experimental tube of the dimensions here given was employed by the lecturer to check his results more than ten years ago. Its interior surface was rough and tarnished, and when warmed dynamically by the entrance of a gas its power as a radiator enabled it to disturb, to some slight extent, the purity of the results. To obviate this, the experimental tube recently employed was provided with an internal silver surface, deposited electrolytically and highly polished. By this arrangement the radiation of the tube itself, as well as its absorption, was rendered quite insensible.

The rock-salt plates used to close the experimental tube, and on which liquid films are also alleged to be deposited, remain to be examined. In this case also an experimentum crucis is possible. If the observed absorptions be due to such liquid films, then the separation of the salts more widely from each other, the space between them being copiously supplied with vapor, ought to produce no effect; but if the absorption, as alleged by the lecturer, be the act of the vapor molecules, then the deepening of the absorbing stratum ought to produce an augmented effect. For many gases and some vapors this problem was solved as far back as 1863. By means of an apparatus then described, polished plates of rock-salt could be brought into contact with each other, and then gradually separated, until the gaseous stratum between them was some inches in depth. With sulphuric ether vapor, the distance between the plates being one twentieth of an inch, an absorption of two per cent was observed. With a thinner stratum, or a weaker vapor, even this small absorption vanished; while in passing from one twentieth of an inch to two inches the absorption rose from two per cent to thirty-five per cent. Such experiments, recently verified, entirely dispose of the hypothesis that liquid films were the cause of the observed absorption.

The vapor-hesion hypothesis involves the assumption that liquids exert on radiant heat an absorbent power which is denied to their vapors. It assumes, in other words, that the seat of absorption is the molecule considered as a whole, and not the constituent atoms of the