Page:Popular Science Monthly Volume 20.djvu/673

This page has been proofread, but needs to be validated.
SOUND AND RADIANT HEAT.
653

stronger than those obtainable from solid matter would probably be thus produced, which, when rapid enough, would generate musical sounds. The intensity of the sound would, of course, be determined by the absorptive power of the gas or vapor.

This idea was tested on the spot. Placing sulphuric ether in a test tube, and connecting the tube with the ear, the intermittent beam was caused to fall upon the vapor above the liquid. A feeble musical sound was distinctly heard. Formic ether was tried in the same way, and with the same result. Bisulphide of carbon was then tried, but the vapor of this liquid proved incompetent to generate a musical sound. These results, which were in perfect accordance with those previously enunciated by the lecturer, were first made public during a discussion at the Society of Telegraph Engineers on the 8th of December, 1880.[1]

It was obvious, however, that the arrangement of Mr. Bell—a truly beautiful one—was not suited to bring out the maximum effect. He had employed a series of lenses to concentrate his beam, and these, however pure, would, in the case of transparent gases, absorb a large portion of the rays most influential in producing the sound. The lecturer, therefore, resorted to lenses of rock-salt and to concave mirrors silvered in front. He employed various sources of heat, including that of the electric lamp. The lime-light he found very convenient. With the lime-light and concave mirror, sounds of surprising intensity were produced by all the highly absorbent gases and vapors. Among gases chloride of methyl was loudest. Conveyed directly to the ear by a tube of India-rubber, the sound of this gas seemed as loud as the peal of an organ. Abandoning the ear-tube, and choosing a suitable recipient for the gas, the sounds were heard at a distance of twenty feet from their origin. As regards intensity, the order of the sounds in gases corresponds exactly with the order of their absorptions of radiant heat.

Among vapors sulphuric ether stands highest, this result being in part due to the great volatility of the liquid. But the intensity of the sound is by no means wholly dependent on volatility. The specific action of the molecules on radiant heat is as clearly shown in these experiments as in those previously conducted with the experimental tube and thermopile. Upward of eighty vapors have been tested in regard to their sound-producing power.

With regard to aqueous vapor, whose action upon radiant heat even the latest publications on this subject describe as nil, it was especially interesting to be able to question the vapor itself as to its absorbent power, and to receive from it an answer which did not admit of doubt. A number of bulbs about an inch in diameter were placed under the receiver of an air-pump, with a vessel containing sulphuric acid beside them. When thoroughly dry they were exposed to an in-

  1. See "Journal of Telegraph Engineers."