Page:Popular Science Monthly Volume 22.djvu/70

This page has been proofread, but needs to be validated.



in course of construction in the north of Ireland (which when completed will have a length of twelve miles) a separate conductor will be provided by the side of the railway, and the return circuit completed through the rails themselves, which in that case need not be insulated; secondary batteries will be used to store the surplus energy created in running down-hill, to be restored in ascending steep inclines, and for passing roadways where the separate insulated conductor is not practicable. The electric railway possesses great advantages over horse or steam power for towns, in tunnels, and in all cases where natural sources of energy, such as water-falls, are available; but it would not be reasonable to suppose that it will in its present condition compete with steam propulsion upon ordinary railways. The transmission of power by means of electric conductors possesses the further advantage over other means of transmission that, provided the resistance of the rails be not very great, the power communicated to the locomotive reaches its maximum when the motion is at its minimum—that is, in commencing to work, or when encountering an exceptional resistance—whereas the utmost economy is produced in the normal condition of working when the velocity of the power-absorbing nearly equals that of the current-producing machine.

The deposition of metals from their solutions is perhaps the oldest of all useful applications of the electric current, but it is only in very recent times that the dynamo-current has been practically applied to the refining of copper and other metals, as now practiced at Birmingham and elsewhere, and upon an exceptionally large scale at Ocker, in Germany. The dynamo-machine there employed was exhibited at the Paris Electrical Exhibition by Dr. Werner Siemens, its peculiar feature being that the conductors upon the rotating armature consisted of solid bars of copper thirty mm. square, in section, which were found only just sufficient to transmit the large quantity of electricity of low tension necessary for this operation. One such machine consuming four-horse power deposits about three hundred kilogrammes of copper per twenty-four hours; the motive-power at Ocker is derived from a water-fall.

Electric energy may also be employed for heating purposes, but in this case it would obviously be impossible for it to compete in point of economy with the direct combustion of fuel for the attainment of ordinary degrees of heat. Bunsen and Sainte-Claire Deville have taught us, however, that combustion becomes extremely sluggish when a temperature of 1,800° C. has been reached, and for effects at temperatures exceeding that limit the electric furnace will probably find advantageous applications. Its specific advantage consists in being apparently unlimited in the degree of heat attainable, thus opening out a new field of investigation to the chemist and metallurgist. Tungsten has been melted in such a furnace, and eight pounds of platinum have been reduced from the cold to the liquid condition in twenty minutes.