Page:Popular Science Monthly Volume 23.djvu/232

This page has been proofread, but needs to be validated.
220
THE POPULAR SCIENCE MONTHLY

bacco-pipe. Presently it will become turbid. Continue the blowing, and the turbidity will increase up to a certain degree of milkiness. Go on blowing with "commendable perseverance," and an inversion of effect will follow: the turbidity diminishes, and at last the water becomes clear again.

The chemistry of this is simple enough. From the lungs a mixture of nitrogen, oxygen, and carbonic acid is exhaled. The carbonic acid combines with the soluble lime and forms a carbonate of lime which is insoluble in mere water. But this carbonate of lime is to a certain extent soluble in water saturated with carbonic acid, and such saturation is effected by the continuation of blowing.

Now take some of the lime-water that has been thus treated, place it in a clean glass flask, and boil it. After a short time the flask will be found incrusted with a thin film of something. This is the carbonate of lime, which has been thrown down again by the action of boiling in drawing off its solvent, the carbonic acid. This crust will effervesce if a little acid is added to it.

In this manner our tea-kettles, engine-boilers, etc., become incrusted when fed with calcareous waters, and most waters are calcareous; those supplied to London, which is surrounded by chalk, are largely so. Thus the boiling or cooking of such water effects a removal of its mineral impurities more or less completely. Other waters contain such mineral matter as salts of sodium and potassium. These are not removable by mere boiling.

Usually we have no very strong motive for removing either these or the dissolved carbonate of lime, or the atmospheric gases from water, but there is another class of impurities of serious importance. These are the organic matters dissolved in all water that has run over land covered with vegetable growth, or, more especially, which has received contributions from sewers or any other form of house-drainage. Such water supplies nutriment to those microscopic abominations, the mirococci, bacilli, bacteria, etc., which are now shown to be connected with blood-poisoning—possibly do the whole of the poisoning business. These little pests are harmless, and probably nutritious, when cooked, but in their raw and wriggling state are horribly prolific in the blood of people who are in certain states of what is called "receptivity." They (the bacteria, etc.) appear to be poisoned or somehow killed off by the digestive secretions of the blood of some people, and nourished luxuriantly in the blood of others. As nobody can be quite sure to which class he belongs, or may presently belong, or whether the water supplied to his household is free from blood-poisoning organisms, cooked water is a safer beverage than raw water.

The requirement for this simple operation of cooking increases with the density of our population, which on reaching a certain degree renders the pollution of all water obtained from the ordinary sources almost inevitable.