Page:Popular Science Monthly Volume 23.djvu/252

This page has been proofread, but needs to be validated.

fixed star or group of stars. Each object in the series differs but slightly from the object just before it and just after it. It seemed to Herschel that he was thus able to view the actual changes by which masses of phosphorescent or glowing vapor became actually condensed down into stars. The condensation of a nebula could be followed in the same manner as we can study the growth of the trees in a forest by comparing the trees of various ages which the forest contains at the same time. In attempting to pronounce upon the positive evidence available in the discussion of Herschel's theory, we encounter a well-known difficulty. To establish this theory, it would be necessary to watch the actual condensation of one single nebula from the primitive gaseous condition down to the stellar points. It may easily be conceived that such a process would require a vast lapse of time, perhaps enormously greater than the period between the invention of the telescope and the present moment. It may at all events be confidently asserted that the condensation of a nebula into a star is a process which has never been witnessed. Whether any stages in that process can be said to have been witnessed is a different matter, on which it is not easy to speak with precision. Drawings of the same nebula, made at different dates, often exhibit great discrepancies. In comparing these drawings, it must be remembered that a nebula is an object usually devoid of distinct outline, and varying greatly in appearance with different telescopic apertures. Take, for instance, the very splendid nebula in Orion, which is one of the most glorious objects that can be seen in a telescope. There can be no doubt that the drawings made at different times do exhibit most marked differences. Indeed, the differences are sometimes so great that it is hard to believe that the same object is depicted. It is well to look also at drawings made of the same object at the same time, but by different observers and with different telescopes. Where we find contemporary drawings at variance—and they are often widely at variance—it seems hard to draw any conclusion from drawings as to the presence or the absence of change in the shape of the nebula.

There are, however, good grounds for believing that nebulæ really do undergo some changes, at least as regards brightness; but whether these changes are such as Herschel's theory would seem to require is quite another question. Perhaps the best authenticated instance is that of the variable nebula in the constellation of Taurus, discovered by Mr. Hind in 1852. At the time of its discovery this object was a small nebula about one minute in diameter, with a central condensation of light. D'Arrest, the distinguished astronomer of Copenhagen, found, in 1861, that this nebula had vanished. On the 29th of December, 1861, the nebula was again seen in the powerful refractor at Pulkova, but, on December 12, 1863, Mr. Hind failed to detect the nebula with the telescope by which it had been originally discovered. This instrument had, however, only half the aperture of the Pulkova