Page:Popular Science Monthly Volume 23.djvu/383

This page has been proofread, but needs to be validated.

piston first one way then the other, overcomes resistance, and does work. To find this, we must multiply the pressure by the motion at every instant and add all the products together. This is what the engine-power meter does, and it shows the continuously growing result on a dial. When the piston moves, it drags the cylinder along; where the steam presses, the wheel is inclined. Neither action alone causes the cylinder to turn, but when they occur together the cylinder turns, and the number of turns registered on a dial shows with mathematical accuracy how much work has been done.

In the steam-engine work is done in an alternating manner, and it so happens that this alternating action exactly suits the integrator. Suppose, however, that the action, whatever it may be, which we wish to estimate, is of a continuous kind, such for instance as the continuous passage of an electric current. Then if, by means of any device, we can suitably incline the wheel, so long as we keep pushing the cylinder along, so long will its rotation measure and indicate the result; but there must come a time when the end of the cylinder is reached. If, then, we drag it back again, instead of going on adding up, it will begin to take off from the result, and the hands on the dial will go backward, which is clearly wrong. So long as the current continues, so long must the hands on the dial turn in one direction. This effect is obtained in the instrument now on the table, the electric energy meter, in this way: Clock-work causes the cylinder to travel backward and forward by means of what is called a mangle-motion, but, instead of moving always in contact with one wheel, the cylinder goes forward in contact with one and back in contact with another on its opposite side. In this instrument the inclination of the wheels is effected by an arrangement of coils of wire, the main current passing through two fixed concentric solenoids, and a shunt current through a great length of fine wire on a movable solenoid, hanging in the space between the others. The movable portion has an equal number of turns in opposite directions, and is therefore unaffected by magnets held near it. The effect of this arrangement is that the energy of the current, that is, the quantity multiplied by the force driving it, or the electrical equivalent of mechanical power, is measured by the slope of the wheels, and the amount of work done by the current during any time, by the number of turns of the cylinder, which is registered on a dial. Professors Ayrton and Perry have devised an instrument which is intended to show the same thing. They make use of a clock, and cause it to go too fast or too slow by the action of the main on the shunt current; the amount of wrongness of the clock, and not the time shown, is said to measure the work done by the current, This method of measuring the electricity by the work it has done is one which has been proposed to enable the electrical companies to make out their bills.

The other method is to measure the amount of electricity that has passed, without regard to the work done. There are three lines on