Page:Popular Science Monthly Volume 23.djvu/634

This page has been proofread, but needs to be validated.

both for the floors and roofs, and by the same method as the experimental beam above described. The iron beams varied in width and weight per yard in accordance with their length and the prospective load, the largest being nineteen feet long by seven inches wide. When the combination beams were completed and ready for the floors and roofs, heavy planks were firmly placed in position and securely supported between the beams, the upper surface of these plank foundations being adjusted on a level with the top surface of the molded beams. These planks served as the bottom of the floor-molds, and, after the béton forming the floor was hardened, they were removed.

Channel-ways had been molded in the walls, on a line with the top of the beams, for the purpose of supporting the outer edges of the floors.

Before the floors and roofs were laid, care was taken to cover all the supporting surfaces with paper, to prevent the adhesion of floor and roof sections to their supports. This precaution was necessary, to permit the movement of the floors and roofs that would unavoidably take place under varying temperatures and loads.

A part of the experimental system contemplated an attempt to warm the house by passing currents of heated air between the floors and ceilings, and up through flues, made in close proximity to each other, for that purpose, in the interior walls of the building; and it was necessary to core out a liberal area of lateral openings through the upper portion of the beams, in order to permit a free circulation of heated air. The ceilings rested upon flanges projecting from the lower portion of the beams, as shown in Fig. 1.

Instead of using sand and gravel, or both, in combination with cement, for floor and roof construction, the preliminary experiments that proved the superior value of broken blue-stone for massive work, led to the adoption of washed, fine screenings from the same material for the floors and roofs, because its greater angularity insured a stronger bond in the work than could be realized by using sand and gravel.

The proportions of materials used for this purpose were, one part of Portland cement to two parts of the fine stone screenings. The preparations being completed for laying down the floors, a thin course of the béton was first put on, and evenly tamped down, to about an inch in thickness, over the whole space intended to be covered. Then rods of iron, five sixteenths of an inch in diameter, were placed both longitudinally and laterally, at a uniform distance of eight inches apart, over the whole surface. Then, on this, a final layer of two inches in thickness was carefully tamped down. In about eight hours, the béton was hardened sufficiently to allow the application of the top surface, which was floated down with a half-inch coat of cement and fine beach-sand mortar, made of equal parts of each. This completed the finish, and made the whole thickness of the work three and a