Open main menu

Page:Popular Science Monthly Volume 24.djvu/76

This page has been validated.
66
THE POPULAR SCIENCE MONTHLY.

of the same trees whose roots are found in the under-clays, and their stems and leaves in the roof-shales; that much of the material of the coal has been subjected to sub-aerial decay at the time of its accumulation; and that in this, ordinary coal differs from bituminous shale, earthy bitumen, and some kinds of cannel, which have been formed under water; that the matter remaining as coal consists almost entirely of epidermal tissues, which, being suberose in character, are highly carbonaceous, very durable, and impermeable by water,[1] and are hence the best fitted for the production of pure coal; and finally that the vegetation and the climatal and geographical features of the coal period were eminently fitted to produce in the vast swamps of that period precisely the effects observed. All these points and many others have been thoroughly worked out for both European and American coal-fields, and seemed to leave no doubt on the subject. But several years ago certain microscopists observed on slices of coal layers filled with spore-cases—a not unusual circumstance, since these were shed in vast abundance by the trees of the coal-forests, and because they contain suberose matter of the same character with epidermal tissues generally. Immediately we were informed that all coal consists of spores; and, this being at once accepted by the unthinking, the results of the labors of many years are thrown aside in favor of this crude and partial theory. A little later, a German microscopist has thought proper to describe coal as made up of minute algæ, and tries to reconcile this view with the appearances, devising at the same time a new and formidable nomenclature of generic and specific names, which would seem largely to represent mere fragments of tissues. Still later, some local facts in a French coal-field have induced an eminent botanist of that country to revive the drift theory of coal, in opposition to that of growth in situ. A year or two ago, when my friend Professor Williamson, of Manchester, informed me that he was preparing a large series of slices of coal with the view of revising the whole subject, I was inclined to say that, after what had been done by Lyell, Goeppert, Logan, Hunt, Newberry, and myself, this was scarcely necessary; but, in view of what I have just stated, it may be that all he can do will be required to rescue from total ruin the results of our labors.

An illustration of a different character is afforded by the controversy now raging with respect to the so-called fucoids of the ancient rocks. At one time the group of fucoids, or algæ, constituted a general place of refuge for all sorts of unintelligible forms and markings; graptolites, worm-trails, crustacean tracks, shrinkage-cracks, and, above all, rill-markings, forming a heterogeneous group of fucoidal remains distinguished by generic and specific names. To these were also added some true land-plants badly preserved, or exhibiting structures not well understood by botanists. Such a group was sure to be eventually

  1. "Acadian Geology," third edition, supplement, p. 68.