Page:Popular Science Monthly Volume 27.djvu/780

This page has been proofread, but needs to be validated.
758
THE POPULAR SCIENCE MONTHLY.

this light falls within the range of vision, the eye is less sensitive to small differences of illumination near this limit of its power. This consideration and some others led me to look to photography for aid, for it is possible by certain technical methods to accentuate the extreme sensitiveness of a photographic plate for minute differences of illumination. [A cardboard, on which a corona had been painted by so thin a wash of Chinese white that it was invisible to the audience, had been photographed. The photograph thrown upon the screen showed the corona plainly.] This cardboard represents the state of things in the sky about the sun. The painted corona is brighter than the cardboard, but our eyes are too dull to see it. In like manner the part of the sky near the sun where there is a background of corona is brighter than the adjoining parts where there is no corona behind, but not in a degree sufficiently great for our eyes to detect the difference.

A photographic plate possesses another and enormous advantage over the eye, in that it is able to furnish a permanent record of the most complex forms from an instantaneous exposure.

In my earlier experiments the necessary isolation of violet light was obtained by interposing a screen of colored glass or a cell containing potassic permanganate. The possible coming of false light upon the sensitive plate from the glass sides of the cell, as well as from precipitation due to the decomposition of the potassic permanganate under the sun's light, led me to seek to obtain the necessary light-selection in the film itself. Captain Abney had shown that argentic bromide, iodide, and chloride, differ greatly in the kind of light to which they are most sensitive. The chloride is most strongly affected by violet light from h to a little beyond K. It was found possible by making use of this selective action of argentic chloride to do away with an absorptive medium. To prevent reflected light, the back of the plate was covered with asphaltum varnish, and frequently a small metal disk a little larger than the sun's image was interposed in front of the plate to cut off the sun's direct light.

The next consideration was as to the optical means by which an image of the sun, as free as possible from imperfections of any kind, could be formed upon the plate. For several obvious reasons the use of lenses was given up, and I turned to reflection from a mirror of speculum metal. My first experiments were made with a Newtonian telescope by Short. With this instrument, during the summer of 1882, about twenty plates were taken on different days, in all of which coronal forms are to be seen about the sun's image. After a very critical examination of these plates, in which I was greatly helped by the kind assistance of Professor Stokes and Captain Abney, there seemed to be good ground to hope that the corona had really been obtained on the plates. [One of these negatives, obtained in August, 1882, was shown upon the screen.]