Page:Popular Science Monthly Volume 27.djvu/864

This page has been proofread, but needs to be validated.
842
THE POPULAR SCIENCE MONTHLY.

parent from the coincidences of the early observations (the observed and calculated values were 29' and 28' respectively). These calculations of Professor Adams, which fix beyond a doubt the position of the mean orbit of the November meteoroids, were made shortly after their appearance in 1866. The publication, about the same time, of the orbit of the first comet of 1866 revealed the fact that that comet and the meteors travel in nearly coincident orbits, and have an intimate relation one with the other. To appreciate the rapid advance of this department of astronomy, we must contrast this certain knowledge with the conflicting views which prevailed at the time of their first appearance, in 1833, with respect to the nature of the phenomenon of which they were the cause. In recognition, presumably on his part in these achievements of science, Professor Newton was elected, in 1872, associate of the Royal Astronomical Society."

Professor Newton has been for more than a dozen years one of the associate editors of the "American Journal of Science," and most of his scientific articles have been written for its pages. He was one of the fifty members appointed by the act of Congress constituting the American Academy of Sciences. In 1860 he was elected a corresponding member of the British Association for the Advancement of Science. He served in 1875 as Vice-President of Section A of the American Association for the Advancement of Science, at its Detroit meeting.

His address on this occasion took the form of a strong plea for more study of mathematics by American men of science; not for the sake of its place in education, but for the advancement of the science itself, and for the assistance that might be derived from it in the pursuit and enlargement of other branches of knowledge. Whatever might be the reasons for it, he said, "the unpleasant fact is that the American contributions to the science of quantity have not been large. Three or four volumes, a dozen memoirs, and here and there a fruitful idea having been selected from them, there is left very little that the world will care much to remember. I refer, of course, to additions to our knowledge, not to the orderly arrangement of it. To make first-rate text-books, or manuals, or treatises, is a work of no mean order, and I would not underestimate it. In good mathematical text-books we need not fear comparison with any nation. But so few additions have been made to our knowledge of quantity that I fear that the idea has been quite general among us that the mathematics is a finished science, or at least a stationary one, and that it has few fertile fields inviting labor and few untrodden regions to be explored. Hence many bright minds, capable of good work, have acted as though the arithmetic, the algebra, and the mechanics which they studied covered all that is known of the science. Instead of going on in some path out to the bounds of knowledge, as they had perhaps the ability to do, they dug in the beaten highways, and with care