knackers and butchers who break and handle the bones of animals which have died of anthrax.
The period of incubation is very short. An ox which has been at work may return to the stall apparently healthy. He eats as usual; then lies down on his side and breathes heavily, while the eyes are still clear. Suddenly his head drops, his body grows cold; at the end of an hour the eye becomes glazed; the animal struggles to get up, and falls dead. In this case, the illness has only lasted for an hour and a half (Empis).
In order to prove that the disease is really caused by Bacillus anthracis, Pasteur inserted a very small drop of blood, taken from an animal which had recently died of anthrax, in a glass flask which contained an infusion of yeast, neutralized by potassium and previously sterilized. In twenty-four hours the liquid, which had been clear, was seen to be full of very light flakes, produced by masses of bacilli, readily discernible under the microscope. A drop from the first flask produced the same effect in a second, and from that to a third, and so on. By this means the organism was completely freed from all which was foreign to it in the original blood, since it is calculated that, after from eight to ten of such processes, the drop of blood was diluted in a volume of liquid greater than the volume of the earth. Yet the tenth, twentieth, and even the fiftieth infusion would, when a drop was inserted under the skin of a sheep, procure its death by splenic fever, with the same symptoms as those produced by the original drop of blood. The bacillus is, therefore, the sole cause of the disease.
These cultures have often since been repeated by numerous observers, so that the microbe has been studied in all its forms, and the extent of its polymorphism has been ascertained. At the end of two days the bacterium, which, while still in the blood, is of a short abrupt form, displays excessively long filaments, which are sometimes rolled up like a coil of string. In about a week many of the filaments contain refracting, somewhat elongated nuclei. These nuclei presently form chaplets, in consequence of the rupture of the cell-wall of the rod which gave birth to them; others, again, float in the liquid in the form of isolated globules. These nuclei are the spores or germs of the microbes, which germinate when placed in the infusion, become elongated, and reproduce fresh bacilli.
These spores are much more tenacious of life than the microbes themselves. The latter perish in a temperature of 60°, by desiccation, in a vacuum, in carbonic acid, alcohol, and compressed oxygen. The spores, on the other hand, resist desiccation, so that they can float in the air in the form of dust. They also resist a temperature of from 90° to 95°, and the effects of a vacuum, of carbonic acid, of alcohol, and compressed oxygen.
In 1873 Pasteur, aided by Chamberland and Roux, carried on some experiments on a farm near Chartres, in order to discover why this dis-