Page:Popular Science Monthly Volume 29.djvu/787

This page has been proofread, but needs to be validated.
THE MICROBES OF ANIMAL DISEASES.
767

certain time the action of the air kills it. Pasteur has, however, found an expedient by which to accomplish his purpose. When the culture is shown to be sterile in consequence of the death of the microbe, he takes as the mother-culture of a fresh series of daily cultures the one which was made on the day preceding the death of the first mother-culture. In this way he has obtained an attenuated virus with which to inoculate rabbits, and the same result might undoubtedly be obtained in the case of horses.

There are many other contagious diseases which affect domestic animals, and which are probably due to microbes, such as, for instance, the infectious pneumonia of horned cattle. This w r as probably the first disease in which the protective effects of inoculation were tried, according to Wilhelm's method. This method consisted in making an incision under the animal's tail with a scalpel dipped 1 in the purulent mucus or blood taken from the lung of a beast which had died of pneumonia; sometimes the serous discharge from the swelling under the tail of an inoculated animal was used for others. Fever and loss of appetite ensued, lasting from eight to twenty-five days, but the animal was afterward safe from further attacks of the disease. Cattle-plague, or contagious typhus, is likewise ascribed to the presence of a microbe with which we are as yet imperfectly acquainted.

Experimental septicæmia is entitled to special mention, since it has too often been confounded with anthrax, and has been unskillfully produced with the intention of vaccinating animals in accordance with Pasteur's process. This occurs when too long an interval (twenty-four hours) elapses after the death of an animal, before taking from it the blood intended for vaccine cultures. After this date the blood noFig. 4.—Septic vibrio, bacillus of malignant ædema (Koch): a, taken from spleen of Guinea-pig; b, from a mouse's lung. longer contains Bacillus anthracis, which is succeeded by another microbe termed Vibrio septicus, differing widely from the anthrax microbe in form, habit, and character (Fig. 4). Bacillus anthracis is straight and immobile, while the Septic Vibrio is sinuous, curled, and mobile. Moreover, it is anaërobic, and does not survive contact with the air, but it thrives in a vacuum or in carbonic acid. Since Bacillus anthracis is, on the other hand, an aërobie, it is clear that the two microbes can not exist simultaneously in the blood or in the same culture-liquid. The inoculation with this fresh microbe is no less fatal; its action is even more rapid than that of Bacillus anthracis, but the lesions are not the same; the spleen remains normal, while the liver is discolored. The septic vibrio is only found in minute quantities in the blood, so that it has escaped the notice of many observers. It is, however, found in immense numbers in the muscles, in the serous fluid of the intestines,