Page:Popular Science Monthly Volume 3.djvu/756

This page has been validated.
738
THE POPULAR SCIENCE MONTHLY.

a colossal tuning-fork, the prongs of which were placed between the poles of a powerful electro-magnet. This fork, which interrupted the battery current, at the proper time, by its own motion, was able to put a heavy cord, thirty feet in length, in the most energetic vibration, and for an indefinite time. I propose, at the present time, to speak of those sympathetic vibrations which are pitched so low as not to come within the limits of human ears, but which are felt rather than heard, and to show how they may be seen as well as felt.

All structures, large or small, simple or complex, have a definite rate of vibration, depending on their materials, size, and shape, and as fixed as the fundamental note of a musical cord. They may also vibrate in parts, as the cord does, and thus be capable of various increasing rates of vibration, which constitute their harmonics. If one body vibrates, all others in the neighborhood will respond, if the rate of vibration in the first agrees with their own principal or secondary rates of vibration, even when no more substantial bond than the air unites a body with its neighbors. In this way, mechanical disturbances, harmless in their origin, assume a troublesome and perhaps a dangerous character, when they enter bodies all too ready to move at the required rate, and sometimes beyond the sphere of their stability.

When the bridge at Colebrooke Dale (the first iron bridge in the world) was building, a fiddler came along and said to the workmen that he could fiddle their bridge down. The builders thought this boast a fiddle-de-dee, and invited the itinerant musician to fiddle away to his heart's content. One note after another was struck upon the strings until one was found with which the bridge was in sympathy. When the bridge began to shake violently, the incredulous workmen were alarmed at the unexpected result, and ordered the fiddler to stop.

At one time, considerable annoyance was experienced in one of the mills in Lowell, because the walls of the building and the floors were violently shaken by the machinery: so much so that, on certain days, a pail of water would be nearly emptied of its contents, while on other days all was quiet. Upon investigation it appeared that the building shook in response to the motion of the machinery only when that moved at a particular rate, coinciding with one of the harmonics of the structure; and the simple remedy for the trouble consisted in making the machinery move at a little more or a little less speed, so as to put it out of time with the building.

We can easily believe that, in many cases, these violent vibrations will loosen the cement and derange the parts of a building, so that it may afterward fall under the pressure of a weight which otherwise it was fully able to bear, and at a time, possibly, when the machinery is not in motion; and this may have something to do with such accidents as that which happened to the Pemberton Mills in Lawrence. Large trees are uprooted in powerful gales, because the wind comes in