Page:Popular Science Monthly Volume 30.djvu/60

This page has been proofread, but needs to be validated.
48
THE POPULAR SCIENCE MONTHLY.

Eozoic tracts of continent were in the earliest times areas of deposition, and that the first elevations of land out of the primeval ocean must have differed in important points from all that have succeeded them; but they were equally amenable to the ordinary laws of denudation. Portions of these oldest crystalline rocks, raised out of the protecting water, were now eroded by atmospheric agents, and especially by the carbonic acid then existing in the atmosphere, perhaps more abundantly than at present, under whose influence the hardest of the gneissic rocks gradually decay. The Arctic lands were subjected, in addition, to the powerful mechanical force of frost and thaw. Thus every shower of rain and every swollen stream would carry into the sea the products of the waste of land, sorting them into fine clays and coarser sands; and the cold currents which cling to the ocean-bottom, now determined in their courses, not merely by the earth's rotation, but also by the lines of folding on both sides of the Atlantic, would carry southwestward, and pile up in marginal banks of great thickness, the débris produced from the rapid waste of the land already existing in the Arctic regions. The Atlantic, opening widely to the north, and having large rivers pouring into it, was especially the ocean characterized, as time advanced, by the prevalence of these phenomena.

Thus throughout the geological history it has happened that, while the middle of the Atlantic has received merely organic deposits of shells of Foraminifera and similar organisms, and this probably only to a small amount, its margins have had piled upon them beds of détritus of immense thickness. Professor Hall, of Albany, was the first geologist who pointed out the vast cosmic importance of these deposits, and that the mountains of both sides of the Atlantic owe their origin to these great lines of deposition; along with the fact, afterward more fully insisted upon by Rogers, that the portions of the crust which received these masses of débris became thereby weighted down and softened, and were more liable than other parts to lateral crushing. Thus in the later Eozoic and early Palæozoic times, which succeeded the first foldings of the oldest Laurentian, great ridges were thrown up, along the edges of which were beds of limestone, and on their summits and sides thick masses of ejected igneous rocks. In the bed of the central Atlantic there are no such accumulations. It must have been a flat, or slightly ridged, plate of the ancient gneiss, hard and resisting, though perhaps with a few cracks, through which igneous matter welled up, as in Iceland and the Azores in more modern times. In this condition of things we have causes tending to perpetuate and extend the distinctions of ocean and continent, mountain and plain, already begun; and of these we may more especially note the continued subsidence of the areas of greatest marine deposition. This has long attracted attention, and affords very convincing evidence of the connection of sedimentary deposit as a cause with the subsidence of the crust.