Open main menu

Page:Popular Science Monthly Volume 4.djvu/176

This page has been validated.

8. Development within the Chrysalis Shell.—It is well known that many insects emerge from the egg not in their final form, but in a wormlike form, called a larva. After this they pass into a second passive state, in which they are again covered with a kind of shell—a sort of second egg-state, called the chrysalis. From this they again emerge as the perfect insect. The butterfly is the most familiar, as well as the best illustrated, of these changes. The larva or caterpillar eats with enormous voracity, and grows very rapidly. When its growth is complete, it covers itself with a shell, and remains perfectly passive and almost immovable for many days or weeks. During this period of quiescence of animal functions there are, however, the most important changes going on within. The wings and legs are formed, the muscles are aggregated in bundles for moving these appendages, the nervous system is more highly developed, the mouth, organs, and alimentary canal, are greatly changed and more highly organized, the simple eyes are changed into compound eyes. Now, all this requires expenditure of force, and therefore decomposition of matter; but no food is taken, therefore the chrysalis must consume its own substance, and therefore lose weight. It does so; the weight of the emerging butterfly is in many cases not one-tenth that of the caterpillar. Force is stored up in the form of organic matter only to be consumed in doing plastic work.

9. Mature Animals.—Whence do animals derive their vital force? I answer, from the decomposition of their food and the decomposition of their tissues.

Plants, as we have seen, derive their vital force from the decomposition of their mineral food. But the chemical compounds on which plants feed are very stable. Their decomposition requires a peculiar and complex contrivance for the reception and utilization of sunlight. These conditions are wanting in animals. Animals, therefore, cannot feed on chemical compounds of the mineral kingdom; they must have organic food, which easily runs into decomposition; they must feed on the vegetable kingdom.

Animals are distinguished from vegetables by incessant decay in every tissue—a decay which is proportional to animal activity. This incessant decay necessitates incessant repair, so that the animal body has been likened to a temple on which two opposite forces are at work in every part, the one tearing down, the other repairing the breach as fast as made. In vegetables no such incessant decay has ever been made out. If it exists, it must be very trifling in comparison. Protoplasm, it is true, is taken up from the older parts of vegetables, and these parts die; but the protoplasm does not seem to decompose, but is used again for tissue-building. Thus the internal activity of animals is of two kinds, tissue-destroying and tissue-building; while that of plants seems to be, principally, at least, of one kind, tissue-building. Animals use food for force and repair and growth, and in the mature