Open main menu

Page:Popular Science Monthly Volume 4.djvu/407

This page has been validated.

is soon reached beyond which further widening is disadvantageous. The higher the dispersive power of the spectroscope the wider the slit that can be used, and the larger the protuberance that can be examined as a whole.

Fig. 1.
PSM V04 D407 Huggins first observation of a prominence.jpg
Huggins's First Observation of a Prominence in full Sunshine.

Mr. Huggins's first successful observation of the form of a solar protuberance was made on February 13, 1869. Fig. 1, copied from the Proceedings of the Royal Society, presents his delineation of what he saw. As his instrument had only the dispersive power of two prisms, and included in its field of view a large portion of the spectrum at once, he found it necessary to supplement its powers by using a red glass to cut off stray light of other colors, and by inserting a diaphragm at the focus of the small telescope of the spectroscope to limit the field of view to the portion of the spectrum immediately adjoining the C line. With the instruments now in use, these precautions are seldom necessary.

Fig. 2.
PSM V04 D407 Spectroscope with prism train.jpg
Spectroscope, with Train of Prisms.

It may be noticed, in passing, that Mr. Huggins had previously (and has subsequently) made many experiments with different absorbing media, in hopes of finding some substance which, by cutting off all light of other color than that emitted by the prominences, should render them visible in the telescope; thus far, however, without success.

The spectroscopes used by different astronomers for observations of this sort differ greatly in form and power. Fig. 2 represents the