Page:Popular Science Monthly Volume 43.djvu/36

This page has been proofread, but needs to be validated.
26
THE POPULAR SCIENCE MONTHLY.

ments they will fail to bear more violent movements. Thus, saying nothing of the required changes in the pelvis as well as in the nerves and blood-vessels, there are, counting bones, muscles, tendons, ligaments, at least fifty different parts in each hind leg which have to be enlarged. Moreover, they have to be enlarged in unlike degrees. The muscles and tendons of the outer toes, for example, need not be added to so much as those of the median toes. Now, throughout their successive stages of growth, all these parts have to be kept fairly well balanced; as any one may infer on remembering sundry of the accidents he has known. Among my own friends I could name one who, when playing lawn-tennis, snapped the Achilles tendon; another who, while swinging his children, tore some of the muscular fibers in the calf of his leg; another who, in getting over a fence, tore a ligament of one knee. Such facts, joined with every one's experience of sprains, show that during the extreme exertions to which limbs are now and then subject, there is a giving way of parts not quite up to the required level of strength. How, then, is this balance to be maintained? Suppose the extensor muscles have all varied appropriately; their variations are useless unless the other co-operative parts have also varied appropriately. Worse than this. Saying nothing of the disadvantage caused by extra weight and cost of nutrition, they will be causes of mischief—causes of derangement to the rest by contracting with undue force. And then, how long will it take for the rest to be brought into adjustment? As Mr. Darwin says concerning domestic animals: "Any particular variation would generally be lost by crossing, reversions etc., . . . unless carefully preserved by man." In a state of nature, then, favorable variations of these muscles would disappear again long before one or a few of the co-operative parts could be appropriately varied, much more before all of them could.

With this insurmountable difficulty goes a difficulty still more insurmountable—if the expression may be allowed. It is not a question of increased sizes of parts only, but of altered shapes of parts, too. A glance at the skeletons of mammals shows how unlike are the forms of the corresponding bones of their limbs; and shows that they have been severally remolded in each species to the different requirements entailed by its different habits. The change from the structures of hind limbs fitted only for walking and trotting to hind limbs fitted also for leaping, implies, therefore, that along with strengthenings of bones there must go alterations in their forms. Now the spontaneous alterations of form which may take place in any bone are countless. How long, then, will it be before there takes place that particular alteration which will make the bone fitter for its new action? And what is the