Page:Popular Science Monthly Volume 44.djvu/173

This page has been proofread, but needs to be validated.

era, which then would comprise some one hundred thousand years. Comparing the Tertiary era with the Quaternary, however, I can not agree with Prof. Dana's estimate that the latter was a third as long as the former, and am quite at a loss to discern evidences justifying that view. The best means for learning their ratio I think to be found in the changes of faunas and floras since the beginning of the Tertiary era, using especially the marine molluscan faunas as most valuable for this comparison. Scarcely any species of marine mollusks have become extinct or undergone important changes during the Glacial and recent periods; but since the Eocene dawn of the Tertiary nearly all of these species have come into existence. Judged upon this basis, the Tertiary era seems probably fifty or a hundred times longer than the Ice age and subsequent time; in other words, it may well have lasted two million or even four million years. Taking the mean of these numbers, or three million years, for Cenozoic time, or the Quaternary and Tertiary ages together, we have precisely the value of Prof. Dana's ratios which he himself assumes for conjectural illustration, namely, forty-eight million years since the Cambrian period began. But the diversified types of animal life in the earliest Cambrian faunas surely imply a long antecedent time for their development, on the assumption that the Creator worked before then as during the subsequent ages in the evolution of all living creatures. According to these ratios, therefore, the time needed for the deposition of the earth's stratified rocks and the unfolding of its plant and animal life must be about a hundred million years.

Reviewing the several results independently reached through the geologic estimates and ratios supplied by Wallace, Dana, and Davis, we are much impressed and convinced of their approximate truth by their somewhat good agreement among themselves, which seems as close as the nature of the problem would lead us to expect, and by their all coming within the limit of one hundred million years which Sir William Thomson estimated on physical grounds. This limit of probable geologic duration seems therefore fully worthy to take the place of the once almost unlimited assumptions of geologists and writers on the evolution of life, that the time at their disposal has been practically infinite. No other more important conclusion in the natural sciences, directly and indirectly modifying our conceptions in a thousand ways, has been reached during this century.