Page:Popular Science Monthly Volume 46.djvu/261

This page has been proofread, but needs to be validated.

naturally be expected to be accompanied by earthquakes, but there is nothing to lead us to suppose that these would be on a much grander scale than those of the present. During its slow elevation, the mountain range would be exposed to wind and weather, rain and rivers would carve it out into ridges and valleys, and frost would splinter its peaks into spires and pinnacles. Subsequently it would sink beneath the sea, and the waves of the sea, as they battered down its cliffs, would remove the last remnants which had escaped the rain and rivers, and roll over an unbroken plain. On this plain, as it continued slowly to subside beneath the sea, the immense deposits of the trias, lias, lower o├Âlites, and Oxford clay would be piled up.

If the rise of the sea floor into the Bristol Alps took place slowly, and involved a great lapse of time, so equally did the sinking of the land to form the sea floor afresh, and in this long interval time was afforded for great changes in the organic world; and thus we reach an explanation of the great and striking differences which distinguish the fossils of the carboniferous rocks from those of later date.

There is no insuperable difficulty in this explanation; its great merit lies in its accordance with the course of Nature as we observe it at the present day; and henceforward it became the motto of geology that the processes of the present furnish the key to the interpretation of the past. The changes in which the life of the earth is manifest are not only slow and gradual now, but they have ever been the same. The earthquakes, which in ancient times shook the land, were no more violent than those of which we have lately read in the daily newspapers; the ancient volcanoes were not more terrible in their outbursts than Krakatoa; floods were not more appalling than those which still from time to time sweep away tens or even hundreds of thousands of human beings from the Ganges plain, and the earth, instead of falling into convulsions every now and then, proceeds on the even tenor of her way, without haste and without rest, preserving a uniformity in her progress which impresses us with its solemn grandeur, but which sometimes seems a trifle monotonous. From its belief that an unbroken uniformity in the operations of Nature extends from the present into the most remote past, geology now came to be called "uniformitarian." It was no longer theologic, no longer catastrophic, and, I am sorry to add, no longer cosmologic. It persistently refused to inquire into the early history of our planet, and restricting its study to the accessible parts of the earth's crust, it abdicated its regal position as the science of the earth, and became as it were a mere petty chieftain, dealing only with rocks and the fossils they contain; the fossils, by the way, not rightly belonging to its province at all.