Page:Popular Science Monthly Volume 46.djvu/678

This page has been proofread, but needs to be validated.
660
THE POPULAR SCIENCE MONTHLY.

should say, perhaps, that the question of glacier motion presents difficulties not yet wholly explained. There can be no doubt, however, that regelation plays an important part.

Another question treated by Tyndall is the manner in which ice first begins to melt under the action of a beam of light passing into it from an electric lamp. Ice usually melts by conducted heat, which reaches first the outside layers. But if we employ a beam from an electric lamp, the heat will reach the ice not only outside but internally, and the melting will begin at certain points in the interior. Here we have a slab of ice which we project upon the screen. We see that the melting begins at certain points, which develop a crystallized appearance resembling flowers. They are points in the interior of the ice, not upon the surface. Tyndall found that when the ice gives way at these internal points there is a formation of apparently empty space. He carefully melted under water such a piece of ice, and found that when the cavity was melted out there was no escape of air, proving that the cavity was really vacuous.

Various speculations have been made as to the cause of this internal melting at definite points, but here again I am not sure if the difficulty has been altogether removed. One point of importance brought out by Tyndall relates to the plane of the flowers. It is parallel to the direction in which the ice originally frozeā€”that is, parallel to the original surface of the water from which it was formed.

I must not dwell further upon isolated questions, however interesting, but will pass on at once to our main subject, which may be divided into three distinct parts, relating namely to heat, especially dark radiation, sound, and the behavior of small particles, such as compose dust, whether of living or dead matter.

The earlier publications of Tyndall on the subject of heat are for the most part embodied in his work entitled Heat as a Mode of Motion. This book has fascinated many readers. I could name more than one now distinguished physicist who drew his first scientific nutriment from it. At the time of its appearance the law of the equivalence of heat and work was quite recently established by the labors of Mayer and Joule, and had taken firm hold of the minds of scientific men; and a great part of Tyndall's book may be considered to be inspired by and founded upon this first law of thermodynamics. At the time of publication of Joule's labors, however, there seems to have been a considerable body of hostile opinion, favorable to the now obsolete notion that heat is a distinct entity called caloric. Looking back, it is a little difficult to find out who were responsible for this reception of the theory of caloric. Perhaps it was rather