Page:Popular Science Monthly Volume 47.djvu/806

This page has been validated.
788
THE POPULAR SCIENCE MONTHLY.

awakens a lively appreciation of the vast differences of magnitude that exist among the different suns of space.

The actual size and might of this great red sun form an attractive subject for contemplation. As it appears to our eyes Aldebaran gives one twenty-five-thousand-millionth as much light as the sun, but if we were placed midway between them the star would outshine the sun in the ratio of not less than 160 to 1. And yet, gigantic as it is, Aldebaran is possibly a pygmy in comparison with Arcturus, whose probable dimensions were discussed in the chapter relating to Boötes. Although Aldebaran is known to possess several of the metallic elements that exist in the sun, its spectrum differs widely from the solar spectrum in some respects, and more closely resembles that of Arcturus.

Other interesting objects in Taurus are σ, divisible with the naked eye, magnitudes five and five and a half, distance 7′; Σ 674 double, magnitudes six and nine, distance 10·5″, p. 147°; Σ 716, double, magnitudes six and seven, distance 5″, p. 200°, a pleasing sight; τ, triple, magnitudes four, ten and a half, and eleven, distances 36″, p. 249°, and 36″, p. 60°. The ten-and-a-half-magnitude star is itself double, as discovered by Burnham; star cluster No. 1030, not quite as broad as the moon, and containing some stars as large as the eleventh magnitude; and nebula No. 1157, the so-called "Crab nebula" of Lord Rosse, which our glasses will show only as a misty patch of faint light, although large telescopes reveal in it a very curious structure.

We now turn to the cluster of circumpolar constellations sometimes called the Royal Family, in allusion to the well-known story of the Ethiopian king Cepheus and his queen Cassiopeia, whose daughter Andromeda was exposed on the seashore to be devoured by a monster, but who was saved by the hero Perseus. All these mythologic personages are represented in the constellations that we are about to study. We begin with Andromeda (map. No. 24). The leading star a marks one corner of the great square of Pegasus. The first star of telescopic interest that we find in Andromeda is μ, a double difficult on account of the faintness of the smaller component. The magnitudes are four and eleven, distance 49″, p. 110°. A few degrees north of μ the naked eye detects a glimmering point where lies the Great Nebula in Andromeda. This is indicated on the map by the number 116. With either of our three telescopes it is an interesting object, but of course it is advisable to use our largest glass in order to get as much light as possible. All that we can see is a long, shuttle-shaped nebulous object, having a brighter point near the center. Many stars are scattered over the field in its neighborhood, but the nebula itself, although its spectrum is peculiar in resembling that of a faint star, is evidently a gaseous or at any rate a meteoritic mass, since