Open main menu

Page:Popular Science Monthly Volume 56.djvu/432

This page has been proofread, but needs to be validated.
418
POPULAR SCIENCE MONTHLY.

upper track; then the top generator will feed into the top road only. Tracing the path of the current under these conditions, we find that it will start from the upper side of the generator through the a switch to the B bus, and thence to the trolley wire at the top of the figure. On reaching the first car a portion of the current passes to the track R, the amount being dependent upon the speed of the car and the load. Why the whole current does not follow this path generally puzzles the layman, but the explanation is that the motors hold the current back, and only allow as much to pass through them as is necessary to perform the required work—that is to say, the current flowing through each car is not controlled by the generator or by the force of the current, but by the requirements of the motors. The amount of current delivered by the generator is governed by the demands of the motors. The current that does not pass through the first car goes on to the second one, and if there were more cars there would be current left in the trolley wire to supply them. After passing through the motors of the two cars the current returns through the rails R to the plate D, and thus to bus A, from which it enters the lower side of the top generator. It will from this explanation be seen that the action of the generator is simply to keep the current circulating. If two of the generators are connected with the bus bars A and B, the current required by the motors will be delivered by the two machines, and if the three generators are placed in service the current will be divided among them.

When two or more generators are used, it is necessary to provide means to prevent the current from dividing unequally between them; if this were not done, one machine might do nearly all the work, while the other one would be practically idle. The means employed to accomplish the result is simply an additional bus bar, which is called an equalizing bus. We will not undertake to explain the principle upon which this arrangement acts; it is sufficient to say that by such means the work can be distributed in amounts directly proportional to the capacity of the generators, so that if one machine is very much larger than the others it will take a portion of the load corresponding to its size. In order that these results may be attained it is necessary to properly adjust the several generators, and as no machine can be made to work with the accuracy of perfection, the work will not be distributed in true proportion for all conditions of load; thus if the generators are adjusted so as to each take its proper share when all the cars are in operation, one machine may do too much or not enough when only one half the number are running, but the excess or deficiency will not be more than a few per cent unless the adjustment is very defective.